ベクトルが正規化され他のベクトルと直交するようにします
tangent
を正規化します
接線 ( tangent
) を正規化し、 normal
に直交しているか確認します(つまり、間の角度は90度です)
See Also: Normalize 関数
ベクトルが正規化され他のベクトルと直交するようにします
tangent
を正規化します
接線 ( tangent
) を正規化し、 normal
に直交しているか確認します
接線 ( binormal
) を正規化し、 normal
と tangent
両方に直交しているか確認します
空間の位置は、通常標準的なXYZ軸システムの座標で指定されています。しかしながら、
正規化(すなわち大きさを1としたもの)や直交(すなわち他と垂直)である場合、 3つのベクトルの"軸"として
解釈することが出来ます。
Creating your own coordinate axes is useful, say, if you want to scale a mesh
in arbitrary directions rather than just along the XYZ axes - you can transform the vertices
to your own coordinate system, scale them and then transform back. Often, a transformation like this will
be carried out along only one axis while the other two are either left as they are or treated equally.
For example, a stretching effect can be applied to a mesh by scaling up on one axis while scaling down
proportionally on the other two. This means that once the first axis vector is specified, it doesn't
greatly matter what the other two are as long as they are normalized and orthogonal. OrthoNormalize
can be used to ensure the first vector is normal and then generate two normalized, orthogonal vectors
for the other two axes.
// Mesh "stretch" effect along a chosen axis. // The axis and amount of scaling. var stretchAxis: Vector3; var stretchFactor = 1.0; // MeshFilter component and arrays for the original and transformed vertices. private var mf: MeshFilter; private var origVerts: Vector3[]; private var newVerts: Vector3[]; // Our new basis vectors. private var basisA: Vector3; private var basisB: Vector3; private var basisC: Vector3; function Start() { // Get the Mesh Filter, then make a copy of the original vertices // and a new array to calculate the transformed vertices. mf = GetComponent.<MeshFilter>(); origVerts = mf.mesh.vertices; newVerts = new Vector3[origVerts.Length]; } function Update() { // BasisA is just the specified axis for stretching - the // other two are just arbitrary axes generated by OrthoNormalize. basisA = stretchAxis; Vector3.OrthoNormalize(basisA, basisB, basisC); // Copy the three new basis vectors into the rows of a matrix // (since it is actually a 4x4 matrix, the bottom right corner // should also be set to 1). var toNewSpace: Matrix4x4 = new Matrix4x4(); toNewSpace.SetRow(0, basisA); toNewSpace.SetRow(1, basisB); toNewSpace.SetRow(2, basisC); toNewSpace[3, 3] = 1.0; // The scale values are just the diagonal entries of the scale // matrix. The vertices should be stretched along the first axis // and squashed proportionally along the other two. var scale: Matrix4x4 = new Matrix4x4(); scale[0, 0] = stretchFactor; scale[1, 1] = 1.0 / stretchFactor; scale[2, 2] = 1.0 / stretchFactor; scale[3, 3] = 1.0; // The inverse of the first matrix transforms the vertices back to // the original XYZ coordinate space(transpose is the same as inverse // for an orthogonal matrix, which this is). var fromNewSpace: Matrix4x4 = toNewSpace.transpose; // The three matrices can now be combined into a single symmetric matrix. var trans: Matrix4x4 = toNewSpace * scale * fromNewSpace; // Transform each of the mesh's vertices by the symmetric matrix. for (var i = 0; i < origVerts.Length; i++) { newVerts[i] = trans.MultiplyPoint3x4(origVerts[i]); } // ...and finally, update the mesh with the new vertex array. mf.mesh.vertices = newVerts; }
using UnityEngine; using System.Collections; public class ExampleClass : MonoBehaviour { public Vector3 stretchAxis; public float stretchFactor = 1.0F; private MeshFilter mf; private Vector3[] origVerts; private Vector3[] newVerts; private Vector3 basisA; private Vector3 basisB; private Vector3 basisC; void Start() { mf = GetComponent<MeshFilter>(); origVerts = mf.mesh.vertices; newVerts = new Vector3[origVerts.Length]; } void Update() { basisA = stretchAxis; Vector3.OrthoNormalize(ref basisA, ref basisB, ref basisC); Matrix4x4 toNewSpace = new Matrix4x4(); toNewSpace.SetRow(0, basisA); toNewSpace.SetRow(1, basisB); toNewSpace.SetRow(2, basisC); toNewSpace[3, 3] = 1.0F; Matrix4x4 scale = new Matrix4x4(); scale[0, 0] = stretchFactor; scale[1, 1] = 1.0F / stretchFactor; scale[2, 2] = 1.0F / stretchFactor; scale[3, 3] = 1.0F; Matrix4x4 fromNewSpace = toNewSpace.transpose; Matrix4x4 trans = toNewSpace * scale * fromNewSpace; int i = 0; while (i < origVerts.Length) { newVerts[i] = trans.MultiplyPoint3x4(origVerts[i]); i++; } mf.mesh.vertices = newVerts; } }
import UnityEngine import System.Collections public class ExampleClass(MonoBehaviour): public stretchAxis as Vector3 public stretchFactor as float = 1.0F private mf as MeshFilter private origVerts as (Vector3) private newVerts as (Vector3) private basisA as Vector3 private basisB as Vector3 private basisC as Vector3 def Start() as void: mf = GetComponent[of MeshFilter]() origVerts = mf.mesh.vertices newVerts = array[of Vector3](origVerts.Length) def Update() as void: basisA = stretchAxis Vector3.OrthoNormalize(, , ) toNewSpace as Matrix4x4 = Matrix4x4() toNewSpace.SetRow(0, basisA) toNewSpace.SetRow(1, basisB) toNewSpace.SetRow(2, basisC) toNewSpace[3, 3] = 1.0F scale as Matrix4x4 = Matrix4x4() scale[0, 0] = stretchFactor scale[1, 1] = (1.0F / stretchFactor) scale[2, 2] = (1.0F / stretchFactor) scale[3, 3] = 1.0F fromNewSpace as Matrix4x4 = toNewSpace.transpose trans as Matrix4x4 = ((toNewSpace * scale) * fromNewSpace) i as int = 0 while i < origVerts.Length: newVerts[i] = trans.MultiplyPoint3x4(origVerts[i]) i++ mf.mesh.vertices = newVerts
See Also: Normalize 関数