interface in Unity.Jobs
Thank you for helping us improve the quality of Unity Documentation. Although we cannot accept all submissions, we do read each suggested change from our users and will make updates where applicable.
CloseFor some reason your suggested change could not be submitted. Please <a>try again</a> in a few minutes. And thank you for taking the time to help us improve the quality of Unity Documentation.
CloseInterface that represents a job that performs the same independent operation for each element of a native container or for a fixed number of iterations.
When you schedule an IJobParallelFor
job, its Execute(int index)
method is invoked on multiple worker threads in parallel to each other.Execute(int index)
is executed once for each index from 0 to the provided length. Each iteration must be independent from other iterations and the safety system enforces
this rule for you. The indices have no guaranteed order and are executed on multiple cores in parallel.
Unity automatically splits the work into chunks no less than the provided batchSize
, and schedules an appropriate number of jobs based on the number of worker threads,
the length of the array, and the batch size. Choose the batch size depending on the amount of work performed in the job. A simple job, for example adding a couple of Vector3
to each other should have a batch size of 32 to 128. However if the work performed is very expensive then it's best practice to use a small batch size, for example a
batch size of 1. IJobParallelFor uses atomic operations to perform work stealing. Batch sizes can be small but they are not for free.
You can use the returned JobHandle
to make sure that the job has completed, or you can pass it to other jobs as a dependency to make sure that the jobs are executed one
after another on the worker threads.
using UnityEngine; using Unity.Collections; using Unity.Jobs;
class ApplyVelocityParallelForSample : MonoBehaviour { struct VelocityJob : IJobParallelFor { // Jobs declare all data that will be accessed in the job // By declaring it as read only, multiple jobs are allowed to access the data in parallel [ReadOnly] public NativeArray<Vector3> velocity;
// By default containers are assumed to be read & write public NativeArray<Vector3> position;
// Delta time must be copied to the job since jobs generally don't have concept of a frame. // The main thread waits for the job same frame or next frame, but the job should do work deterministically // independent on when the job happens to run on the worker threads. public float deltaTime;
// The code actually running on the job public void Execute(int i) { // Move the positions based on delta time and velocity position[i] = position[i] + velocity[i] * deltaTime; } }
public void Update() { var position = new NativeArray<Vector3>(500, Allocator.Temp);
var velocity = new NativeArray<Vector3>(500, Allocator.Temp); for (var i = 0; i < velocity.Length; i++) velocity[i] = new Vector3(0, 10, 0);
// Initialize the job data var job = new VelocityJob() { deltaTime = Time.deltaTime, position = position, velocity = velocity };
// Schedule a parallel-for job. First parameter is how many for-each iterations to perform. // The second parameter is the batch size, // essentially the no-overhead innerloop that just invokes Execute(i) in a loop. // When there is a lot of work in each iteration then a value of 1 can be sensible. // When there is very little work values of 32 or 64 can make sense. JobHandle jobHandle = job.Schedule(position.Length, 64);
// Ensure the job has completed. // It is not recommended to Complete a job immediately, // since that reduces the chance of having other jobs run in parallel with this one. // You optimally want to schedule a job early in a frame and then wait for it later in the frame. jobHandle.Complete();
Debug.Log(job.position[0]);
// Native arrays must be disposed manually. position.Dispose(); velocity.Dispose(); } }
Execute | Performs work against a specific iteration index. |
Did you find this page useful? Please give it a rating:
Thanks for rating this page!
What kind of problem would you like to report?
Thanks for letting us know! This page has been marked for review based on your feedback.
If you have time, you can provide more information to help us fix the problem faster.
Provide more information
You've told us this page needs code samples. If you'd like to help us further, you could provide a code sample, or tell us about what kind of code sample you'd like to see:
You've told us there are code samples on this page which don't work. If you know how to fix it, or have something better we could use instead, please let us know:
You've told us there is information missing from this page. Please tell us more about what's missing:
You've told us there is incorrect information on this page. If you know what we should change to make it correct, please tell us:
You've told us this page has unclear or confusing information. Please tell us more about what you found unclear or confusing, or let us know how we could make it clearer:
You've told us there is a spelling or grammar error on this page. Please tell us what's wrong:
You've told us this page has a problem. Please tell us more about what's wrong:
Thank you for helping to make the Unity documentation better!
Your feedback has been submitted as a ticket for our documentation team to review.
We are not able to reply to every ticket submitted.
When you visit any website, it may store or retrieve information on your browser, mostly in the form of cookies. This information might be about you, your preferences or your device and is mostly used to make the site work as you expect it to. The information does not usually directly identify you, but it can give you a more personalized web experience. Because we respect your right to privacy, you can choose not to allow some types of cookies. Click on the different category headings to find out more and change our default settings. However, blocking some types of cookies may impact your experience of the site and the services we are able to offer.
More information
These cookies enable the website to provide enhanced functionality and personalisation. They may be set by us or by third party providers whose services we have added to our pages. If you do not allow these cookies then some or all of these services may not function properly.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
These cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising. Some 3rd party video providers do not allow video views without targeting cookies. If you are experiencing difficulty viewing a video, you will need to set your cookie preferences for targeting to yes if you wish to view videos from these providers. Unity does not control this.
These cookies are necessary for the website to function and cannot be switched off in our systems. They are usually only set in response to actions made by you which amount to a request for services, such as setting your privacy preferences, logging in or filling in forms. You can set your browser to block or alert you about these cookies, but some parts of the site will not then work. These cookies do not store any personally identifiable information.