Collider components define the shape of an object for the purposes of physical collisions. A collider, which is invisible, need not be the exact same shape as the object’s mesh and in fact, a rough approximation is often more efficient and indistinguishable in gameplay.
The simplest (and least processor-intensive) colliders are the so-called primitive collider types. In 3D, these are the Box Collider, Sphere Collider and Capsule Collider. In 2D, you can use the Box Collider 2D and Circle Collider 2D. Any number of these can be added to a single object to create compound colliders.
With careful positioning and sizing, compound colliders can often approximate the shape of an object quite well while keeping a low processor overhead. Further flexibility can be gained by having additional colliders on child objects (eg, boxes can be rotated relative to the local axes of the parent object). When creating a compound collider like this, there should only be one Rigidbody component, placed on the root object in the hierarchy.
Note, that primitive colliders will not work correctly with shear transforms - that means that if you use a combination of rotations and non-uniform scales in the tranform hierarchy so that the resulting shape would no longer match a primitive shape, the primitive collider will not be able to represent it correctly.
There are some cases, however, where even compound colliders are not accurate enough. In 3D, you can use Mesh Colliders to match the shape of the object’s mesh exactly. In 2D, the Polygon Collider 2D will generally not match the shape of the sprite graphic perfectly but you can refine the shape to any level of detail you like. These colliders are much more processor-intensive than primitive types, however, so use them sparingly to maintain good performance. Also, a mesh collider will normally be unable to collide with another mesh collider (ie, nothing will happen when they make contact). You can get around this in some cases by marking the mesh collider as Convex in the inspector. This will generate the collider shape as a “convex hull” which is like the original mesh but with any undercuts filled in. The benefit of this is that a convex mesh collider can collide with other mesh colliders so you may be able to use this feature when you have a moving character with a suitable shape. However, a good general rule is to use mesh colliders for scene geometry and approximate the shape of moving objects using compound primitive colliders.
Colliders can be added to an object without a Rigidbody component to create floors, walls and other motionless elements of a scene. These are referred to as static colliders. In general, you should not reposition static colliders by changing the Transform position since this will impact heavily on the performance of the physics engine. Colliders on an object that does have a Rigidbody are known as dynamic colliders. Static colliders can interact with dynamic colliders but since they don’t have a Rigidbody, they will not move in response to collisions.
Страницы справки для различных типов коллайдеров, указанных выше, имеют дополнительную информацию об их свойствах и способах использования.
When colliders interact, their surfaces need to simulate the properties of the material they are supposed to represent. For example, a sheet of ice will be slippery while a rubber ball will offer a lot of friction and be very bouncy. Although the shape of colliders is not deformed during collisions, their friction and bounce can be configured using Physics Materials. Getting the parameters just right can involve a bit of trial and error but an ice material, for example will have zero (or very low) friction and a rubber material with have high friction and near-perfect bounciness. See the reference pages for Physic Material and Physics Material 2D for further details on the available parameters. Note that for historical reasons, the 3D asset is actually called Physic Material (without the S) but the 2D equivalent is called Physics Material 2D (with the S).
The scripting system can detect when collisions occur and initiate actions using the OnCollisionEnter
function. However, you can also use the physics engine simply to detect when one collider enters the space of another without creating a collision. A collider configured as a Trigger (using the Is Trigger property) does not behave as a solid object and will simply allow other colliders to pass through. When a collider enters its space, a trigger will call the OnTriggerEnter
function on the trigger object’s scripts.
В случае коллизий, физический движок вызывает функции с особыми именами в скриптах, которые присоединены к вовлечённым в коллизию объектам. Вы можете поместить любой код в эти функции для реакции на событие столкновения. Например, вы можете проиграть звук аварии, когда автомобиль врезается в препятствие.
On the first physics update where the collision is detected, the OnCollisionEnter
function is called. During updates where contact is maintained, OnCollisionStay
is called and finally, OnCollisionExit
indicates that contact has been broken. Trigger colliders call the analogous OnTriggerEnter
, OnTriggerStay
and OnTriggerExit
functions. Note that for 2D physics, there are equivalent functions with 2D appended to the name, eg, OnCollisionEnter2D
. Full details of these functions and code samples can be found on the Script Reference page for the MonoBehaviour class.
У обычных не триггерных коллизий есть ещё дополнительная деталь: как минимум один из вовлечённых в коллизию объектов должен обладать не кинематическим Rigidbody (т.е. IsKinematic должен быть выключен). Если оба объекта являются кинематическими, то тогда не будут вызываться функции, вроде OnCollisionEnter
и т.д. С триггерными столкновениями это условие не применяется, так что и кинематические и не кинематические Rigidbody будут незамедлительно вызывать OnTriggerEnter
при пересечении триггерного коллайдера.
Коллайдеры взаимодействуют друг с другом по разному, в зависимости от того, как настроены их компоненты Rigidbody. Тремя важными конфигурациями являются статичный коллайдер (Static Collider) (т.е. компонент Rigidbody отсутствует вообще), Rigidbody коллайдер (Rigidbody Collider), и кинематический Rigidbody коллайдер (Kinematic Rigidbody Collider).
Это игровой объект, у которого есть коллайдер, но нету Rigidbody. Статичные коллайдеры используются для геометрии уровней, которая всегда стоит на месте и совсем не двигается. Встречные Rigidbody объекты будут врезаться в статичный коллайдер, но его не сдвинут.
В физический движок заложено предположение, что статичные коллайдеры никогда не двигаются или меняются, и, на основе этого предположения, движок делает полезные оптимизации. Следовательно, статичные коллайдеры нельзя включать/выключать, двигать или масштабировать во время игрового процесса. Если вы измените статичный коллайдер, то в результате физическим движком будет вызван дополнительный внутренний перерасчёт, который будет сопровождаться большим падением производительности. Хуже того, изменения иногда могут оставить коллайдер в неопределённом состоянии, в результате чего будут производиться ошибочные физические расчёты. Например, рейкаст к изменённому статичному коллайдеру может не обнаружить коллайдера или обнаружить его в случайном месте в пространстве. Кроме того Rigidbody объекты, в которых врежется статичный коллайдер, не обязательно будут “разбужены”, и статичный коллайдер не применит никакого трения. По этим причинам, следует изменять только коллайдеры с Rigidbody. Если вы хотите, чтобы на коллайдер объекта не влияли встречные Rigidbody, но чтобы его можно было двигать при помощи скрипта, то вам следует прикрепить кинематический Rigidbody компонент к нему, нежели вообще не добавлять Rigidbody.
Это игровой объект, к которому прикреплён коллайдер и нормальный не кинематический Rigidbody. Rigidbody коллайдеры полностью симулируются физическим движком и могут реагировать на коллизии и силы, приложенные из скрипта. Они могут сталкиваться с другими объектами (включая статичные коллайдеры) и являются самой распространённой конфигурацией коллайдера в играх, которые используют физику.
Это игровой объект, к которому прикреплён коллайдер и кинематический Rigidbody (т.е. свойство IsKinematic компонента Rigidbody включено). Изменяя компонент Transform, вы можете перемещать объект с кинематическим Rigidbody, но он не будет реагировать на коллизии и приложенные силы так же, как и не кинематические Rigidbody. Кинематические Rigidbody должны использоваться для коллайдеров, которые могут двигаться или периодически выключаться/включаться, иначе они будут вести себя как статичные коллайдеры. Примером этого является скользящая дверь, которая обычно является недвижимым физическим препятствием, но по надобности может открываться. В отличие от статичного коллайдера, движущийся кинематический Rigidbody будет применять трение к другим объектам и, в случае контакта, будет “будить” другие Rigidbody.
Даже когда они неподвижны, кинематические Rigidbody коллайдеры ведут себя иначе, в отличие от статичных коллайдеров. Например, если коллайдер настроен как триггер, то вам также понадобится добавить к нему Rigidbody, чтобы можно было в вашем скрипте принимать события триггера. Если вы не хотите, чтобы триггер падал под действием силы гравитации или подвергался влиянию физики, то тогда вы можете включить свойство IsKinematic.
A Rigidbody component can be switched between normal and kinematic behavior at any time using the IsKinematic property.
A common example of this is the “ragdoll” effect where a character normally moves under animation but is thrown physically by an explosion or a heavy collision. The character’s limbs can each be given their own Rigidbody component with IsKinematic enabled by default. The limbs will move normallly by animation until IsKinematic is switched off for all of them and they immediately behave as physics objects. At this point, a collision or explosion force will send the character flying with its limbs thrown in a convincing way.
Когда сталкиваются 2 объекта, количество различных событий в скрипте зависит от конфигураций компонентов Rigidbody столкнувшихся объектов. Схемы ниже содержат детали того, какие функции событий будут вызваны, основываясь на присоединённых к объектам компонентах. В некоторых комбинациях эффект производится только на один из двух объектов, так что помните правило - законы физики не применяются к объектам, у которых нет присоединённого Rigidbody.
Происходит определение столкновений, и при их возникновении посылаются сообщения | ||||||
---|---|---|---|---|---|---|
Статичный коллайдер (Static Collider) | Rigidbody коллайдер (Rigidbody Collider) | Кинематический Rigidbody коллайдер (Kinematic Rigidbody Collider) | Статичный коллайдер-триггер (Static Trigger Collider) | Rigidbody коллайдер-триггер (Rigidbody Trigger Collider) | Кинематический Rigidbody коллайдер-триггер (Kinematic Rigidbody Trigger Collider) | |
Статичный коллайдер (Static Collider) | Да | |||||
Rigidbody коллайдер (Rigidbody Collider) | Да | Да | Да | |||
Кинематический Rigidbody коллайдер (Kinematic Rigidbody Collider) | Да | |||||
Статичный коллайдер-триггер (Static Trigger Collider) | ||||||
Rigidbody коллайдер-триггер (Rigidbody Trigger Collider) | ||||||
Кинематический Rigidbody коллайдер-триггер (Kinematic Rigidbody Trigger Collider) |
При коллизиях отсылаются сообщения триггера | ||||||
---|---|---|---|---|---|---|
Статичный коллайдер (Static Collider) | Rigidbody коллайдер (Rigidbody Collider) | Кинематический Rigidbody коллайдер (Kinematic Rigidbody Collider) | Статичный коллайдер-триггер (Static Trigger Collider) | Rigidbody коллайдер-триггер (Rigidbody Trigger Collider) | Кинематический Rigidbody коллайдер-триггер (Kinematic Rigidbody Trigger Collider) | |
Статичный коллайдер (Static Collider) | Да | Да | ||||
Rigidbody коллайдер (Rigidbody Collider) | Да | Да | Да | |||
Кинематический Rigidbody коллайдер (Kinematic Rigidbody Collider) | Да | Да | Да | |||
Статичный коллайдер-триггер (Static Trigger Collider) | Да | Да | Да | Да | ||
Rigidbody коллайдер-триггер (Rigidbody Trigger Collider) | Да | Да | Да | Да | Да | Да |
Кинематический Rigidbody коллайдер-триггер (Kinematic Rigidbody Trigger Collider) | Да | Да | Да | Да | Да | Да |