This guide is an updated version of the following Unity blog post: Spotlight Team Best Practices: Setting up the Lighting Pipeline - Pierre Yves Donzallaz.
First, let’s go through the definitions of several important graphics rendering terms that you will encounter frequently in this article.
These operations are repeated many times a second, depending on the frame rate.
The following flowchart provides a high-level perspective of the entire lighting pipeline in Unity, from the point of view of a content creator.
You start by selecting a render pipeline. Then you decide how the indirect lighting is generated and pick a Global Illumination system accordingly. After you’ve made sure all the global lighting settings are tuned appropriately for your project, you can continue adding Lights, Emissive Surfaces, Reflection Probes, Light Probes, and Light Probe Proxy Volumes (LPPVs). Detailing the usage and features of all these lighting objects is beyond the scope of this article, therefore I encourage you to read the Lighting section of the manual to learn how to utilize them correctly in your projects.
Until early 2018, only one render pipeline was available in Unity; the Built-In Render Pipeline. This render pipeline offers a choice of rendering paths: forward, and deferred.
In January 2018, Unity unveiled the Scriptable Render Pipeline (SRP), which allows you to customize the rendering loop via C# scripting. This is actually a minor revolution in the realm of game engines: users are finally able to personalize the culling of objects, their drawing, and the post-processing of the frame without having to use a low-level programming language like C++.
Unity currently provides two pre-built SRPs:
A tile is a small 2-dimensional square pixel section of the frame, and a cluster is a 3-dimensional volume inside the camera frustum. Both the tile and cluster rendering techniques rely on the listing of the lights affecting every single tile and cluster, whose lighting can then be computed in one single pass with the corresponding list of known lights. Opaque objects will most likely be shaded using the tile system, whereas transparent ones will rely on the cluster system. The main advantage is faster processing of the lighting and the considerable reduction in bandwidth consumption compared to the Built-In Render Pipeline (deferred), which depends on much slower multi-pass light accumulation.
You can use the following decision chart to quickly find out which render pipeline you should select based on a few critical criteria.
You can download the latest versions of HDRP and URP via the Unity Package Manager (Window > Package Manager). The easiest way to get started with one of these SRPs is to create a new project with the Unity Hub and use one of the corresponding templates.
If you want to set up your project for HDRP, ensure you have the required package installed. Then use the HD Render Pipeline Wizard (Window > Render Pipeline > HD Render Pipeline Wizard) to set up your project in one click.
If you have some rendering knowledge, are familiar with C#, and need to fully tailor the renderer for your Project, you can experiment with the SRP concept to create your own Custom Scriptable Render Pipeline. The Universal Render Pipeline is especially easy to extend, due to its smaller shader library and the ability to inject, remove and swap rendering passes rapidly.
Porting your project’s materials from the Built-In Render Pipeline to HDRP or to URP is relatively easy in Unity, thanks to a 1-click material converter under Edit > Render Pipeline > Upgrade…. Note that it is a non-reversible action. Backing up your project beforehand is highly recommended!
Nevertheless, custom shaders will have to be ported by hand, so transitioning from the Built-In Render Pipeline to HDRP or URP during production might be time-consuming, depending on the number of custom shaders you would have to rewrite.
Additionally, because the HDRP is more physically correct than the Built-In Render Pipeline, especially regarding light attenuation and distribution, you should not expect your project to look identical after switching to HDRP.
Furthermore, HDRP and URP are not cross-compatible, as they do not share the same rendering features. Porting your project from HDRP to URP and vice versa is possible, but it is not a 1-click operation and will require manual rework of the lighting, the materials, and the shaders!
If you want to include indirect lighting in your Scene, you must use one of Unity’s two Global Illumination systems, or generate it using your own baking solution. The two systems available in Unity, under Window > Rendering > Lighting Settings, are:
To summarize, if you are starting a new project in Unity 2019.3 or later, Enlighten will not be available if you use URP or HDRP. If you choose the Built-in Render Pipeline, Enlighten will remain available until then end of 2020/early 2021.
The Progressive Lightmapper can prioritize the computation of the lighting for objects visible to the camera and greatly speed up the iteration on the lighting, at the cost of increasing the overall baking time for the entire scene. The Progressive Lightmapper uses the CPU to calculate the indirect lighting using path tracing. A new GPU Progressive Lightmapper is currently in preview, and will radically reduce the baking time for your scenes.
Because both Enlighten and the Progressive Lightmapper use different methods to produce the baked lighting, you should not expect the resulting lighting to match exactly when comparing them.
Have a look at the diagram below to decide which Global Illumination system is recommended for your project, as well as its main advantages and disadvantages.
No matter which Global Illumination system you use, Unity will only consider objects that are marked as “Contribute GI” during the baking/precomputing of the lighting. Dynamic (i.e. non-static) objects have to rely on the Light Probes you placed throughout the scene to receive indirect lighting.
Because the baking/precomputing of the lighting is a relatively slow process, only large and complex assets with distinct lighting variations, such as concavity and self-shadowing, should be tagged as “Contribute GI”. Smaller and convex meshes that receive homogeneous lighting should not be marked as such, and they should, therefore, receive indirect lighting from the Light Probes which store a simpler approximation of the lighting. Larger dynamic objects can rely on LPPVs, in order to receive better localized indirect lighting. Limiting the number of objects tagged as “Contribute GI” in your scene is absolutely crucial to minimize baking times while maintaining an adequate lighting quality. You can learn more about this optimization process and the importance of Probe lighting in this tutorial.
Unity allows both the Baked and Realtime GI systems to be active simultaneously, which gives you access to all lighting features. However, you must be warned that enabling both systems greatly increases the baking time and the memory usage at runtime because these systems do not rely on the same data sets. Furthermore, the interactive update of the indirect lighting at runtime will put additional strain on the CPU, and you can expect discrepancies when visually comparing the indirect lighting provided by the Baked and the Realtime GI systems, as they rely on different techniques to simulate the indirect lighting and often operate at significantly different resolutions.
You should restrict the usage of both GI systems to high-end platforms and/or to projects that have tightly controlled scenes with predictable costs. This approach should only be used by expert users who have a very good understanding of all lighting settings because managing both systems adds great complexity. Consequently, picking one of the two GI systems is usually a safer strategy for most projects. Using both systems is rarely recommended!
The Mode property of a Light component is a common source of confusion.
There are three Light Modes available in the Light Inspector:
It is very important to note that the mode of a light is only relevant if the Baked Global Illumination system is enabled. If you do not use any GI system or only use the Realtime GI system, then all Baked and Mixed lights will behave as though their Mode property was set to Realtime.
The following diagram combines a decision flowchart with a comparison table; it can help you decide which light mode is appropriate every time a new light is added into the scene.
As you can see in the previous diagram, all Mixed Lights in a Scene have specific baked and real-time capabilities, depending on the Lighting Mode that you picked in the Lighting window.
There are three modes to choose from:
Shadowmask Lighting Mode has two quality settings:
When using HDRP’s Shadowmask Lighting Mode, the Shadowmask feature is enabled in the HDRP Asset assigned in the Graphics settings; it then has to be activated specifically for your camera(s) via the Frame Settings.
The following table gives you a general overview of the features supported by each Render Pipeline in Unity 2019.3.
Now that we have introduced the render pipelines and the main lighting features, let’s have a look at a few examples of projects and see which settings could be used to light them. Since every project is unique, you might use slightly different options based on your requirements.
If you rely heavily on the Asset Store to build your prototype, the Built-In Render Pipeline could be the only suitable render pipeline, as most assets found on the Store are not fully compatible with HDRP and URP; nonetheless, asset compatibility will improve over time. If you are building all the assets from the ground up and already have a clear idea of your project’s requirements, then you could pick one of the two SRPs (i.e. URP or HDRP) or even create a custom one.
When you are in the early stage of (pre-)production and need a quick turnaround and maximum flexibility for the lighting, you might prefer a full real-time approach that does not require any precomputation, therefore you might want to turn off both the Baked and Realtime GI systems. To alleviate the lack of proper indirect lighting, you can enable Screen Space Ambient Occlusion: it can help ground the object in the scene by offering cheap real-time contact shadows.
If you are targeting mobile devices, URP could be a great candidate to ensure solid performance for your strategy game. If the rendering pipeline needs to be customized to better suit your game, a graphics programmer will probably find extending URP straightforward. If you pick URP and use Baked Global Illumination, be aware that at the moment, the Shadowmask Mixed Lighting Mode is not supported.
Alternatively, if you decide to stick to the Built-In Render Pipeline because, for example, you rely on many assets from the Asset Store, all Mixed Lighting modes are supported. In this case, an approach with the Shadowmask Lighting Mode will provide baked shadows while still allowing dynamic objects to cast real-time shadows. If Shadowmasks are too expensive for your project, you can fall back to the cheapest Subtractive mode. Finally, the forward rendering path is probably the best option if you have a very small number of lights in your level(s), and if you’re targeting older hardware.
If you are aiming for AAA-quality visuals on PC and consoles for your linear first-person shooter, HDRP should be the preferred render pipeline. Again, with the help of graphics programmers, a custom SRP could also be developed.
If your levels contain many real-time shadow casting lights (e.g. destructible light props and moving lights), then using the Baked GI system with the Baked Indirect mode should ensure you get great looking indirect lighting from the Mixed directional light and the Baked lights in static light props. If your levels consist of a larger proportion of fixed shadow casting lights, then an approach with Shadowmasks could be recommended because HDRP offers a great hybrid Shadowmask mode which gives you more control over the blend between real-time and baked shadows.
If you also plan to support the Nintendo Switch, then using URP would be recommended, so that you can support most gaming platforms on the market and not having to go through the potentially tedious process of porting your project from HDRP to URP, or vice versa.
If you plan to release a battle royale game for PC and consoles, that features large-scale environments and fully dynamic lighting, you should select HDRP, or extend it to tailor the rendering pipeline to your project. You could consider URP if you are not aiming for AAA visual fidelity and are targeting mobile devices or systems with lower specifications.
In order to accommodate for the day-night cycle, as HDRP and URP do not support the Realtime Global Illumination system (Enlighten): the day-night cycle would have to be handled with an Indirect Bake and a custom script that would, for instance, modulate the sun and indirect light intensity throughout the day.
For this particular scenario, if you are using the Built-in Render Pipeline, activating both the Realtime GI and the Baked GI systems is not recommended, because the resulting overhead in terms of performance and scene management for an immense level could be critical. Another argument against the use of both GI systems is the unpredictable nature of such large-scale multiplayer games: performance estimations are for instance more difficult than in a highly-scripted linear level.
The rendering landscape has changed radically in Unity over the past few years, thanks to the introduction of the Scriptable Render Pipelines. Therefore, keeping up with all these changes and their implications for the lighting pipeline can be exhausting.
Hopefully, this guide and its many illustrations have given you a better understanding of the capabilities of each Render Pipeline so that you can confidently start your projects in Unity with the appropriate rendering and lighting settings!
You can learn more about the lighting in Unity and the rendering pipelines with the following pages: