Our shaderA program that runs on the GPU. More info
See in Glossary currently can neither receive nor cast shadows. Let’s implement shadow casting first.
In order to cast shadows, a shader has to have a ShadowCaster pass type in any of its subshaders or any fallback. The ShadowCaster pass is used to render the object into the shadowmap, and typically it is fairly simple - the vertex shaderA program that runs on each vertex of a 3D model when the model is being rendered. More info
See in Glossary only needs to evaluate the vertex position, and the fragment shader pretty much does not do anything. The shadowmap is only the depth bufferA memory store that holds the z-value depth of each pixel in an image, where the z-value is the depth for each rendered pixel from the projection plane. More info
See in Glossary, so even the color output by the fragment shader does not really matter.
This means that for a lot of shaders, the shadow caster pass is going to be almost exactly the same (unless object has custom vertex shader based deformations, or has alpha cutout / semitransparent parts). The easiest way to pull it in is via UsePass shader command:
Pass { // regular lighting pass } // pull in shadow caster from VertexLit built-in shader UsePass "Legacy Shaders/VertexLit/SHADOWCASTER"
However we’re learning here, so let’s do the same thing “by hand” so to speak. For shorter code, we’ve replaced the lighting pass (“ForwardBase”) with code that only does untextured ambient. Below it, there’s a “ShadowCaster” pass that makes the object support shadow casting.
Shader "Lit/Shadow Casting" { SubShader { // very simple lighting pass, that only does non-textured ambient Pass { Tags {"LightMode"="ForwardBase"} CGPROGRAM #pragma vertex vert #pragma fragment frag #include "UnityCG.cginc" struct v2f { fixed4 diff : COLOR0; float4 vertex : SV_POSITION; }; v2f vert (appdata_base v) { v2f o; o.vertex = UnityObjectToClipPos(v.vertex); half3 worldNormal = UnityObjectToWorldNormal(v.normal); // only evaluate ambient o.diff.rgb = ShadeSH9(half4(worldNormal,1)); o.diff.a = 1; return o; } fixed4 frag (v2f i) : SV_Target { return i.diff; } ENDCG } // shadow caster rendering pass, implemented manually // using macros from UnityCG.cginc Pass { Tags {"LightMode"="ShadowCaster"} CGPROGRAM #pragma vertex vert #pragma fragment frag #pragma multi_compile_shadowcaster #include "UnityCG.cginc" struct v2f { V2F_SHADOW_CASTER; }; v2f vert(appdata_base v) { v2f o; TRANSFER_SHADOW_CASTER_NORMALOFFSET(o) return o; } float4 frag(v2f i) : SV_Target { SHADOW_CASTER_FRAGMENT(i) } ENDCG } } }
Now there’s a plane underneath, using a regular built-in Diffuse shader, so that we can see our shadows working (remember, our current shader does not support receiving shadows yet!).
We’ve used the #pragma multi_compile_shadowcaster directive. This causes the shader to be compiled into several variants with different preprocessor macros defined for each (see multiple shader variants page for details). When rendering into the shadowmap, the cases of point lights vs other light types need slightly different shader code, that’s why this directive is needed.
Did you find this page useful? Please give it a rating:
Thanks for rating this page!
What kind of problem would you like to report?
Thanks for letting us know! This page has been marked for review based on your feedback.
If you have time, you can provide more information to help us fix the problem faster.
Provide more information
You've told us this page needs code samples. If you'd like to help us further, you could provide a code sample, or tell us about what kind of code sample you'd like to see:
You've told us there are code samples on this page which don't work. If you know how to fix it, or have something better we could use instead, please let us know:
You've told us there is information missing from this page. Please tell us more about what's missing:
You've told us there is incorrect information on this page. If you know what we should change to make it correct, please tell us:
You've told us this page has unclear or confusing information. Please tell us more about what you found unclear or confusing, or let us know how we could make it clearer:
You've told us there is a spelling or grammar error on this page. Please tell us what's wrong:
You've told us this page has a problem. Please tell us more about what's wrong:
Thank you for helping to make the Unity documentation better!
Your feedback has been submitted as a ticket for our documentation team to review.
We are not able to reply to every ticket submitted.
When you visit any website, it may store or retrieve information on your browser, mostly in the form of cookies. This information might be about you, your preferences or your device and is mostly used to make the site work as you expect it to. The information does not usually directly identify you, but it can give you a more personalized web experience. Because we respect your right to privacy, you can choose not to allow some types of cookies. Click on the different category headings to find out more and change our default settings. However, blocking some types of cookies may impact your experience of the site and the services we are able to offer.
More information
These cookies enable the website to provide enhanced functionality and personalisation. They may be set by us or by third party providers whose services we have added to our pages. If you do not allow these cookies then some or all of these services may not function properly.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
These cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising. Some 3rd party video providers do not allow video views without targeting cookies. If you are experiencing difficulty viewing a video, you will need to set your cookie preferences for targeting to yes if you wish to view videos from these providers. Unity does not control this.
These cookies are necessary for the website to function and cannot be switched off in our systems. They are usually only set in response to actions made by you which amount to a request for services, such as setting your privacy preferences, logging in or filling in forms. You can set your browser to block or alert you about these cookies, but some parts of the site will not then work. These cookies do not store any personally identifiable information.