To draw geometry on the screen, Unity issues draw calls to the graphics API. A draw call tells the graphics API what to draw and how to draw it. Each draw call contains all the information the graphics API needs to draw on the screen, such as information about textures, shadersA program that runs on the GPU. More info
See in Glossary, and buffers. Draw calls can be resource intensive, but often the preparation for a draw call is more resource intensive than the draw call itself.
To prepare for a draw call, the CPU sets up resources and changes internal settings on the GPU. These settings are collectively called the render state. Changes to the render state, such as switching to a different material, are the most resource-intensive operations the graphics API performs.
Because render-state changes are resource intensive, it is important to optimize them. The main way to optimize render-state changes is to reduce the number of them. There are two ways to do this:
Optimizing draw calls and render-state changes has a number of benefits for your application. Mainly, it improves frame times, but it also:
You can use multiple draw call optimization methods in the same scene but be aware that Unity prioritizes draw call optimization methods in a particular order. If you mark a GameObject to use more than one draw call optimization method, Unity uses the highest priority method.
The only exception to this is the SRP Batcher in the Universal Render PipelineA series of operations that take the contents of a Scene, and displays them on a screen. Unity lets you choose from pre-built render pipelines, or write your own. More info
See in Glossary (URP) or the High-Definition Render Pipeline (HDRP). When you use the SRP Batcher, Unity also supports static batchingA technique Unity uses to draw GameObjects on the screen that combines static (non-moving) GameObjects into big Meshes, and renders them in a faster way. More info
See in Glossary for GameObjects that are SRP Batcher compatible. Unity prioritizes draw call optimizations in the following order:
If you mark a GameObject for static batching and Unity successfully batches it, Unity disables GPU instancing for that GameObject, even if the renderer uses an instancing shader. When this happens, the InspectorA Unity window that displays information about the currently selected GameObject, asset or project settings, allowing you to inspect and edit the values. More info
See in Glossary window displays a warning message that suggests that you disable static batching. Similarly, if Unity can use GPU instancing for a meshThe main graphics primitive of Unity. Meshes make up a large part of your 3D worlds. Unity supports triangulated or Quadrangulated polygon meshes. Nurbs, Nurms, Subdiv surfaces must be converted to polygons. More info
See in Glossary, Unity disables dynamic batchingAn automatic Unity process which attempts to render multiple meshes as if they were a single mesh for optimized graphics performance. The technique transforms all of the GameObject vertices on the CPU and groups many similar vertices together. More info
See in Glossary for that mesh.