• ML-Agents Package
  • ML-Agents Theory
  • Get started
    • Installation
    • Sample: Running an Example Environment
    • More Example Environments
  • Learning Environments and Agents
    • Designing Learning Environments
    • Designing Agents
    • Sample: Making a New Learning Environment
    • Using an Executable Environment
  • Training
    • Training ML-Agents Basics
    • Training Configuration File
    • Using Tensorboard
    • Customizing Training via Plugins
    • Custom Trainer Plugin
    • Profiling Trainers
  • Python APIs
    • Python Gym API
    • Python Gym API Documentation
    • Python PettingZoo API
    • Python PettingZoo API Documentation
    • Python Low-Level API
    • Python Low-Level API Documentation
    • On/Off Policy Trainer Documentation
    • Python Optimizer Documentation
  • Python Tutorial with Google Colab
    • Using a UnityEnvironment
    • Q-Learning with a UnityEnvironment
    • Using Side Channels on a UnityEnvironment
  • Advanced Features
    • Custom Side Channels
    • Custom Grid Sensors
    • Input System Integration
    • Inference Engine
    • Hugging Face Integration
    • Game Integrations
    • Match-3
    • ML-Agents Package Settings
    • Unity Environment Registry
  • Cloud & Deployment (deprecated)
    • Using Docker
    • Amazon Web Services
    • Microsoft Azure
  • Reference & Support
    • FAQ
    • Limitations
    • Migrating
    • versioning
    • ML-Agents Glossary
  • Background
    • Machine Learning
    • Unity
    • PyTorch
    • Using Virtual Environment
    • ELO