Version: 2018.4
LanguageEnglish
  • C#

Transform.forward

Suggest a change

Success!

Thank you for helping us improve the quality of Unity Documentation. Although we cannot accept all submissions, we do read each suggested change from our users and will make updates where applicable.

Close

Submission failed

For some reason your suggested change could not be submitted. Please <a>try again</a> in a few minutes. And thank you for taking the time to help us improve the quality of Unity Documentation.

Close

Cancel

Switch to Manual
public Vector3 forward;

Description

The blue axis of the transform in world space.

Manipulate a GameObject’s position on the Z axis (blue axis) of the transform in world space. Unlike Vector3.forward, Transform.forward moves the GameObject while also considering its rotation.

When a GameObject is rotated, the blue arrow representing the Z axis of the GameObject also changes direction. Transform.forward moves the GameObject in the blue arrow’s axis (Z).

For moving the GameObject on the Z axis while ignoring rotation, see Vector3.forward.

using UnityEngine;

public class Example : MonoBehaviour { Rigidbody m_Rigidbody; float m_Speed;

void Start() { //Fetch the Rigidbody component you attach from your GameObject m_Rigidbody = GetComponent<Rigidbody>(); //Set the speed of the GameObject m_Speed = 10.0f; }

void Update() { if (Input.GetKey(KeyCode.UpArrow)) { //Move the Rigidbody forwards constantly at speed you define (the blue arrow axis in Scene view) m_Rigidbody.velocity = transform.forward * m_Speed; }

if (Input.GetKey(KeyCode.DownArrow)) { //Move the Rigidbody backwards constantly at the speed you define (the blue arrow axis in Scene view) m_Rigidbody.velocity = -transform.forward * m_Speed; }

if (Input.GetKey(KeyCode.RightArrow)) { //Rotate the sprite about the Y axis in the positive direction transform.Rotate(new Vector3(0, 1, 0) * Time.deltaTime * m_Speed, Space.World); }

if (Input.GetKey(KeyCode.LeftArrow)) { //Rotate the sprite about the Y axis in the negative direction transform.Rotate(new Vector3(0, -1, 0) * Time.deltaTime * m_Speed, Space.World); } } }

Another example:

using UnityEngine;

// Computes the angle between the target transform and this object

public class Example : MonoBehaviour { public float angleBetween = 0.0f; public Transform target;

void Update() { Vector3 targetDir = target.position - transform.position; angleBetween = Vector3.Angle(transform.forward, targetDir); } }