docs.unity3d.com
Search Results for

    Show / Hide Table of Contents

    Class ModelBuilder

    Class responsible for run-time model building from Neural Net primitives.

    Inheritance
    object
    ModelBuilder
    Inherited Members
    object.ToString()
    object.Equals(object)
    object.Equals(object, object)
    object.ReferenceEquals(object, object)
    object.GetHashCode()
    object.GetType()
    object.MemberwiseClone()
    Namespace: Unity.Barracuda
    Assembly: solution.dll
    Syntax
    public class ModelBuilder

    Constructors

    ModelBuilder(Model)

    Create a model builder helper to construct the underlying Model.

    Declaration
    public ModelBuilder(Model model = null)
    Parameters
    Type Name Description
    Model model

    base model to continue building on

    Properties

    model

    Model under construction

    Declaration
    public Model model { get; }
    Property Value
    Type Description
    Model

    Methods

    Abs(string, object)

    Element-wise function that calculates absolute values of the input: f(x) = abs(x)

    Declaration
    public Layer Abs(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    Acos(string, object)

    Element-wise Acos activation function: f(x) = acos(x)

    Declaration
    public Layer Acos(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    Acosh(string, object)

    Element-wise Acosh activation function: f(x) = acosh(x)

    Declaration
    public Layer Acosh(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    Add(string, object[])

    Element-wise add of each of the input tensors with multidimensional broadcasting support.

    Declaration
    public Layer Add(string name, object[] inputs)
    Parameters
    Type Name Description
    string name

    Layer name

    object[] inputs

    input nodes

    Returns
    Type Description
    Layer

    created Layer instance

    Asin(string, object)

    Element-wise Asin activation function: f(x) = asin(x)

    Declaration
    public Layer Asin(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    Asinh(string, object)

    Element-wise Asinh activation function: f(x) = asinh(x)

    Declaration
    public Layer Asinh(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    Atan(string, object)

    Element-wise Atan activation function: f(x) = atan(x)

    Declaration
    public Layer Atan(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    Atanh(string, object)

    Element-wise Atanh activation function: f(x) = atanh(x)

    Declaration
    public Layer Atanh(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    AvgPool2D(string, object, int[], int[], int[])

    Apply 'average' pooling by downscaling H and W dimension according to pool, stride and pad. Pool and stride should be of size 2 and format is [W, H]. Pad should be of size 4 and format is [pre W, pre H, post W, post H].

    Output batch and channels dimensions the same as input. output.shape[H,W] = (input.shape[H,W] + pad[1,0] + pad[3,2] - pool[1,0]) / stride[1,0] + 1.

    Declaration
    public Layer AvgPool2D(string name, object input, int[] pool, int[] stride, int[] pad)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    int[] pool

    pooling

    int[] stride

    stride

    int[] pad

    padding

    Returns
    Type Description
    Layer

    created Layer instance

    Border2D(string, object, int[], float)

    Pads H and W dimension with a given constant value (default to 0). Pad should be of size 4 and format is [pre W, pre H, post W, post H]. If pad contain negative values H and W dimensions will be cropped instead.

    For example a tensor of shape(1,2,3,1) [1, 2, 3], [4, 5, 6]

    With pad [2, 1, 2, 1]

    Result in a tensor of shape(1,4,7,1) [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 2, 3, 0, 0], [0, 0, 4, 5, 6, 0, 0], [0, 0, 0, 0, 0, 0, 0]

    Declaration
    public Layer Border2D(string name, object input, int[] pad, float constantValue = 0)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    int[] pad

    padding

    float constantValue

    border constant value

    Returns
    Type Description
    Layer

    created Layer instance

    Border3D(string, object, int[], float)

    Pads D,H and W dimension with a given constant value (default to 0). Pad should be of size 6 and format is [pre W, pre H, pre D, post W, post H, post D]. If pad contain negative values H and W dimensions will be cropped instead.

    Declaration
    public Layer Border3D(string name, object input, int[] pad, float constantValue = 0)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    int[] pad

    padding

    float constantValue

    constant value to use for border

    Returns
    Type Description
    Layer

    created Layer instance

    Ceil(string, object)

    Element-wise function that produces rounding towards the greatest integer less than or equal to the input value: f(x) = ceil(x)

    Declaration
    public Layer Ceil(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    Clip(string, object, float, float)

    Element-wise Clip function that limits values within an interval: f(x, xmin, xmax) = min(max(x, xmin), xmax)

    Declaration
    public Layer Clip(string name, object input, float min, float max)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    float min

    min

    float max

    max

    Returns
    Type Description
    Layer

    created Layer instance

    Concat(string, object[], int, bool)

    Concatenate a list of tensors into a single tensor. All input tensors must have the same shape, except for the axis to concatenate on. If axisIs8D==true axis rank is from [S,R,N,T,D,H,W,C] overwise from [N,H,W,C] axis must be superior to -4 axis must be inferior to 8 when axisIs8D==true or inferior to 4 if axisIs8D==false

    Declaration
    public Layer Concat(string name, object[] inputs, int axis = -1, bool axisIs8D = false)
    Parameters
    Type Name Description
    string name

    Layer name

    object[] inputs

    input node

    int axis

    axis

    bool axisIs8D

    is axis 8D

    Returns
    Type Description
    Layer

    created Layer instance

    Const(string, Tensor, int, int)

    Allow to load a tensor from constants.

    Declaration
    public Layer Const(string name, Tensor tensor, int insertionIndex = -1, int rank = -1)
    Parameters
    Type Name Description
    string name

    Layer name

    Tensor tensor

    data Tensor

    int insertionIndex

    insertion index in Layer list

    int rank

    constant rank

    Returns
    Type Description
    Layer

    created Layer instance

    ConstantOfShape(string, object, float)

    Creates a constant tensor populated with value as the same shape of input.

    Declaration
    public Layer ConstantOfShape(string name, object input, float value)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    float value

    value

    Returns
    Type Description
    Layer

    created Layer instance

    Conv2D(string, object, int[], int[], Tensor, Tensor)

    Apply a spatial 2D convolution on H and W. Stride should be of size 2 and format is [W, H]. Pad should be of size 4 and format is [pre W, pre H, post W, post H]. Kernel should be a tensor of shape [kernelHeight, kernelWidth, kernelDepth, kernelCount] Bias should be a tensor with (batch == 1) and (height * width * channels == kernelCount)

    Output batch is same as input. Output channel is kernel.kernelCount. output.shape[H,W] = (input.shape[H,W] + pad[1,0] + pad[3,2] - kernel.shape[1,0]) / stride[1,0] + 1.

    Declaration
    public Layer Conv2D(string name, object input, int[] stride, int[] pad, Tensor kernel, Tensor bias)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    int[] stride

    stride

    int[] pad

    padding

    Tensor kernel

    kernel weight data Tensor

    Tensor bias

    bias data Tensor

    Returns
    Type Description
    Layer

    created Layer instance

    Conv2DTrans(string, object, int[], int[], int[], Tensor, Tensor)

    Apply a spatial 2D transposed convolution on H and W. Stride should be of size 2 and format is [W, H]. Pad should be of size 4 and format is [pre W, pre H, post W, post H]. Kernel should be a tensor of rank 4 of dimensions [kernelHeight, kernelWidth, kernelDepth, kernelCount] Bias should be a tensor with (batch == 1) and (height * width * channels == kernelCount) OutputPad should be of length 0 or 2, format is [W, H]. If OutputPad length is 0 it will be defaulted to: OutputPad[W,H] = (input.shape[W,H] * stride[0,1] + pad[0,1] + pad[2,3] - [kernelWidth, kernelHeight]) % stride[0,1]

    Output batch is same as input. Output channel is kernel.shape[3]. output.shape[H,W] = (input.shape[H,W]-1) * stride[0,1] - (pad[1,0] + pad[3,2]) + [kernelWidth, kernelHeight] + OutputPad[W,H]

    Declaration
    public Layer Conv2DTrans(string name, object input, int[] stride, int[] pad, int[] outputPad, Tensor kernel, Tensor bias)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    int[] stride

    stride

    int[] pad

    padding

    int[] outputPad

    output padding

    Tensor kernel

    kernel weight data Tensor

    Tensor bias

    bias data Tensor

    Returns
    Type Description
    Layer

    created Layer instance

    Conv3D(string, object, int[], int[], Tensor, Tensor)

    Apply a spatial 3D convolution on H, W and D. Stride should be of size 3 and format is [W, H, D]. Pad should be of size 6 and format is [pre W, pre H, pre D, post W, post H, post D]. Kernel should be a tensor of shape [kernelSpatialHeight, kernelSpatialWidth, kernelSpatialDepth, kernelDepth, kernelCount] Bias should be a tensor with (batch == 1) and (height * width * channels == kernelCount)

    Output batch is same as input. Output channel is kernel.kernelCount. output.shape[D,H,W] = (input.shape[D,H,W] + pad[2,1,0] + pad[5,4,3] - kernel.shape[2,1,0]) / stride[2,1,0] + 1.

    Declaration
    public Layer Conv3D(string name, object input, int[] stride, int[] pad, Tensor kernel, Tensor bias)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    int[] stride

    stride

    int[] pad

    padding

    Tensor kernel

    kernel weight data Tensor

    Tensor bias

    bias data Tensor

    Returns
    Type Description
    Layer

    created Layer instance

    Copy(string, object)

    Make a shallow copy of the input tensor.

    Declaration
    public Layer Copy(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    Cos(string, object)

    Element-wise Cos activation function: f(x) = cos(x)

    Declaration
    public Layer Cos(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    Cosh(string, object)

    Element-wise Cosh activation function: f(x) = cosh(x)

    Declaration
    public Layer Cosh(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    Dense(string, object, Tensor, Tensor)

    Apply a densely connected layer (aka general matrix multiplication or GEMM) Bias should be a tensor with (batch == input.shape[H] * input.shape[W] * input.shape[C]) and only one other dimensions of size > 1 Weight should be a tensor with (batch == 1) and (height * width * channels == bias.shape[B] * )

    Output shape is [input.shape[B], 1, 1, Weight.shape[H]*Weight.shape[W]*Weight.shape[C]]

    Declaration
    public Layer Dense(string name, object input, Tensor weight, Tensor bias)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Tensor weight

    weight data Tensor

    Tensor bias

    bias data Tensor

    Returns
    Type Description
    Layer

    created Layer instance

    Dense3(string, object, Tensor, Tensor)

    Rank 3 Dense layer

    Declaration
    public Layer Dense3(string name, object input, Tensor weight, Tensor bias)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Tensor weight

    weight data Tensor

    Tensor bias

    bias data Tensor

    Returns
    Type Description
    Layer

    created Layer instance

    DepthToSpace(string, object, int, string)

    DepthToSpace rearranges (permutes) data from depth into blocks of spatial data. This is the reverse transformation of SpaceToDepth. More specifically, this op outputs a copy of the input tensor where values from the depth dimension are moved in spatial blocks to the height and width dimensions. By default, mode = DCR. In the DCR mode, elements along the depth dimension from the input tensor are rearranged in the following order: depth, column, and then row. In the CRD mode, elements along the depth dimension from the input tensor are rearranged in the following order: column, row, and depth.

    Declaration
    public Layer DepthToSpace(string name, object source, int blocksize, string mode)
    Parameters
    Type Name Description
    string name

    Layer name

    object source

    input node

    int blocksize

    block size

    string mode

    mode, see Layer.DepthToSpaceMode

    Returns
    Type Description
    Layer

    created Layer instance

    DepthwiseConv2D(string, object, int[], int[], Tensor, Tensor)

    Apply a spatial 2D depthwise convolution on H and W. Stride should be of size 2 and format is [W, H]. Pad should be of size 4 and format is [pre W, pre H, post W, post H]. Kernel should be a tensor of shape [kernelHeight, kernelWidth, kernelDepth, kernelCount] Thus input must have a channel dimension of 1 Bias should be a tensor with (batch == 1) and (height * width * channels == kernelCount)

    Output batch is same as input. Output channel is kernel.shape[3]. output.shape[H,W] = (input.shape[H,W] + pad[1,0] + pad[3,2] - kernel.shape[1,0]) / stride[1,0] + 1.

    Declaration
    public Layer DepthwiseConv2D(string name, object input, int[] stride, int[] pad, Tensor kernel, Tensor bias)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    int[] stride

    stride

    int[] pad

    padding

    Tensor kernel

    kernel weight data Tensor

    Tensor bias

    bias data Tensor

    Returns
    Type Description
    Layer

    created Layer instance

    Div(string, object[])

    Element-wise division of each of the input tensors with multidimensional broadcasting support. First element is divided by the 2nd, then result is divided by the third one and so on.

    Declaration
    public Layer Div(string name, object[] inputs)
    Parameters
    Type Name Description
    string name

    Layer name

    object[] inputs

    input nodes

    Returns
    Type Description
    Layer

    created Layer instance

    Elu(string, object, float)

    Element-wise Elu activation function: f(x) = x if x >= 0 else alpha*(e^x - 1) alpha default is 1.0

    Declaration
    public Layer Elu(string name, object input, float alpha = 1)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    float alpha

    alpha

    Returns
    Type Description
    Layer

    created Layer instance

    Equal(string, object, object)

    Performs a equal logical operation elementwise on the input tensors with multidimensional broadcasting support. Return 1.0 elementwise if condition is true 0.0 otherwise.

    Declaration
    public Layer Equal(string name, object input0, object input1)
    Parameters
    Type Name Description
    string name

    Layer name

    object input0

    left input node

    object input1

    right input node

    Returns
    Type Description
    Layer

    created Layer instance

    Erf(string, object)

    Element-wise Erf activation function: f(x) = erf(x)

    Declaration
    public Layer Erf(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    Exp(string, object)

    Element-wise Exp function that calculates exponential of the input: f(x) = e^

    Declaration
    public Layer Exp(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    Expand(string, object, int[])

    Broadcast the input tensor following the given shape and similar to numpy.array(input) * numpy.ones(shape). Two corresponding dimension must have the same value, or the input dimension is 1.

    Declaration
    public Layer Expand(string name, object input, int[] shape)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    int[] shape

    shape

    Returns
    Type Description
    Layer

    created Layer instance

    Flatten(string, object)

    From a Tensor of shape [S,R,N,T,D,H,W,C] return a tensor of shape [S,R,N,1,1,1,1,TDHWC]

    Declaration
    public Layer Flatten(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    Floor(string, object)

    Element-wise function that produces rounding towards least integer greater than or equal to the input value: f(x) = floor(x)

    Declaration
    public Layer Floor(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    Gather(string, object, object, int, bool)

    Gathers input along provided axis. Swizzling pattern is given by input indices: If axisIs8D==false axis == 0: gatheredData[b, y, x, c] = data[indices[b], y, x, c] axis == 1: gatheredData[b, y, x, c] = data[b, indices[y], x, c] ... Else axis == 0: gatheredData[s, r, n, t, d, y, x, c] = data[indices[s], r, n, t, d, y, x, c] axis == 1: gatheredData[s, r, n, t, d, y, x, c] = data[indices[s], indices[y], n, t, d, y, x, c] ... While in both case axis == -1: gatheredData[..., x, c] = data[...x, indices[c]] axis must be superior to -4 axis must be inferior to 8 when axisIs8D==true or inferior to 4 if axisIs8D==false

    Declaration
    public Layer Gather(string name, object input, object indices, int axis = -1, bool axisIs8D = false)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    object indices

    indices

    int axis

    axis

    bool axisIs8D

    is axis 8D

    Returns
    Type Description
    Layer

    created Layer instance

    GlobalAvgPool2D(string, object)

    Apply 'average' pooling by downscaling H and W dimension to [1,1]

    Declaration
    public Layer GlobalAvgPool2D(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    GlobalMaxPool2D(string, object)

    Apply 'max' pooling by downscaling H and W dimension to [1,1]

    Declaration
    public Layer GlobalMaxPool2D(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    Greater(string, object, object)

    Performs a greater logical operation elementwise on the input tensors with multidimensional broadcasting support. Return 1.0 elementwise if condition is true 0.0 otherwise.

    Declaration
    public Layer Greater(string name, object input0, object input1)
    Parameters
    Type Name Description
    string name

    Layer name

    object input0

    left input node

    object input1

    right input node

    Returns
    Type Description
    Layer

    created Layer instance

    GreaterEqual(string, object, object)

    Performs a greaterEqual logical operation elementwise on the input tensors with multidimensional broadcasting support. Return 1.0 elementwise if condition is true 0.0 otherwise.

    Declaration
    public Layer GreaterEqual(string name, object input0, object input1)
    Parameters
    Type Name Description
    string name

    Layer name

    object input0

    left input node

    object input1

    right input node

    Returns
    Type Description
    Layer

    created Layer instance

    HardSigmoid(string, object, float, float)

    Element-wise HardSigmoid activation function: f(x) = maX(0, min(1, a * x + b))

    Declaration
    public Layer HardSigmoid(string name, object input, float alpha = 0.2, float beta = 0.5)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    float alpha

    alpha

    float beta

    beta

    Returns
    Type Description
    Layer

    created Layer instance

    Identity(string, object, int)

    No-op layer

    Declaration
    public Layer Identity(string name, object input, int rank = -1)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    int rank

    input rank

    Returns
    Type Description
    Layer

    created Layer instance

    Input(string, int, int)

    Add an input to the model

    Declaration
    public Model.Input Input(string name, int batch, int channels)
    Parameters
    Type Name Description
    string name

    input name

    int batch

    input batch size

    int channels

    input channel count

    Returns
    Type Description
    Model.Input

    Input instance

    Input(string, int, int, int, int)

    Add an input to the model

    Declaration
    public Model.Input Input(string name, int batch, int height, int width, int channels)
    Parameters
    Type Name Description
    string name

    input name

    int batch

    input batch size

    int height

    input height

    int width

    input width

    int channels

    input channel count

    Returns
    Type Description
    Model.Input

    Input instance

    Input(string, int[], int)

    Add an input to the model

    Declaration
    public Model.Input Input(string name, int[] shape, int rank)
    Parameters
    Type Name Description
    string name

    input name

    int[] shape

    input shape

    int rank

    input rank

    Returns
    Type Description
    Model.Input

    Input instance

    Input(string, TensorShape)

    Add an input to the model

    Declaration
    public Model.Input Input(string name, TensorShape shape)
    Parameters
    Type Name Description
    string name

    input name

    TensorShape shape

    input shape

    Returns
    Type Description
    Model.Input

    Input instance

    LRN(string, object, float, float, float, int)

    Apply Local Response Normalization as described in the AlexNet paper https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf It normalizes over local input regions, local region being defined across channels.

    For an element X[n, h, w, c] in a tensor of shape (N x H x W x C), its region is X[n, h, w, cRange] with cRange = [max(0, c - floor((size - 1) / 2)), min(C - 1, c + ceil((size - 1) / 2)].

    y = x / Pow( bias + alpha * sum( xOverLocalRange ^ 2 ) / size, beta)

    Output shape is same as input.

    Declaration
    public Layer LRN(string name, object input, float alpha, float beta, float bias, int size)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    float alpha

    alpha

    float beta

    beta

    float bias

    bias

    int size

    size

    Returns
    Type Description
    Layer

    created Layer instance

    LSTM(string, object, string[], object, object, object, int, object, object)

    LSTM

    Declaration
    public Layer[] LSTM(string name, object input, string[] outputs, object w, object r, object b, int hiddenSize, object initialHidden = null, object initialCell = null)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    string[] outputs

    output nodes

    object w

    W data

    object r

    R data

    object b

    B data (optional)

    int hiddenSize

    Number of neurons in the hidden layer

    object initialHidden

    Initial value of the hidden layer (optional)

    object initialCell

    Initial value of the hidden layer (optional)

    Returns
    Type Description
    Layer[]

    created Layer instances

    LeakyRelu(string, object, float)

    Element-wise LeakyRelu activation function: f(x) = x if x >= 0 else alpha * x alpha default is 0.01

    Declaration
    public Layer LeakyRelu(string name, object input, float alpha = 0.01)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    float alpha

    alpha

    Returns
    Type Description
    Layer

    created Layer instance

    Less(string, object, object)

    Performs a less logical operation elementwise on the input tensors with multidimensional broadcasting support. Return 1.0 elementwise if condition is true 0.0 otherwise.

    Declaration
    public Layer Less(string name, object input0, object input1)
    Parameters
    Type Name Description
    string name

    Layer name

    object input0

    left input node

    object input1

    right input node

    Returns
    Type Description
    Layer

    created Layer instance

    LessEqual(string, object, object)

    Performs a less equal logical operation elementwise on the input tensors with multidimensional broadcasting support. Return 1.0 elementwise if condition is true 0.0 otherwise.

    Declaration
    public Layer LessEqual(string name, object input0, object input1)
    Parameters
    Type Name Description
    string name

    Layer name

    object input0

    left input node

    object input1

    right input node

    Returns
    Type Description
    Layer

    created Layer instance

    Log(string, object)

    Element-wise Log function that calculates the natural log of the input: f(x) = log(x)

    Declaration
    public Layer Log(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    LogSoftmax(string, object, int, bool)

    Return the logSoftmax (log of normalized exponential) values of the input along flatWidth of the input tensor. Thus output will be of shape of the input. If axisIs8D==true axis rank is from [S,R,N,T,D,H,W,C] otherwise from [N,H,W,C] axis must be superior to -4 axis must be inferior to 8 when axisIs8D==true or inferior to 4 if axisIs8D==false

    Declaration
    public Layer LogSoftmax(string name, object input, int axis = 3, bool axisIs8D = false)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    int axis

    axis

    bool axisIs8D

    is axis 8D

    Returns
    Type Description
    Layer

    created Layer instance

    LogicalAnd(string, object, object)

    Performs a and logical operation elementwise on the input tensors with multidimensional broadcasting support. Return 1.0 elementwise if condition is true 0.0 otherwise. Input is consider false if 0.0 elementwise true otherwise.

    Declaration
    public Layer LogicalAnd(string name, object input0, object input1)
    Parameters
    Type Name Description
    string name

    Layer name

    object input0

    left input node

    object input1

    right input node

    Returns
    Type Description
    Layer

    created Layer instance

    LogicalNot(string, object)

    Performs a not logical operation elementwise on the input tensor. Return 1.0 elementwise if condition is true 0.0 otherwise. Input is consider false if 0.0 elementwise true otherwise.

    Declaration
    public Layer LogicalNot(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    LogicalOr(string, object, object)

    Performs a or logical operation elementwise on the input tensors with multidimensional broadcasting support. Return 1.0 elementwise if condition is true 0.0 otherwise. Input is consider false if 0.0 elementwise true otherwise.

    Declaration
    public Layer LogicalOr(string name, object input0, object input1)
    Parameters
    Type Name Description
    string name

    Layer name

    object input0

    left input node

    object input1

    right input node

    Returns
    Type Description
    Layer

    created Layer instance

    LogicalXor(string, object, object)

    Performs a xor logical operation elementwise on the input tensors with multidimensional broadcasting support. Return 1.0 elementwise if condition is true 0.0 otherwise. Input is consider false if 0.0 elementwise true otherwise.

    Declaration
    public Layer LogicalXor(string name, object input0, object input1)
    Parameters
    Type Name Description
    string name

    Layer name

    object input0

    left input node

    object input1

    right input node

    Returns
    Type Description
    Layer

    created Layer instance

    MatMul(string, object, object)

    Applies matrix multiplication between A and B

    Declaration
    public Layer MatMul(string name, object input0, object input1)
    Parameters
    Type Name Description
    string name

    Layer name

    object input0

    first input node

    object input1

    second input node

    Returns
    Type Description
    Layer

    created Layer instance

    Max(string, object[])

    Element-wise max of each of the input tensors with multidimensional broadcasting support.

    Declaration
    public Layer Max(string name, object[] inputs)
    Parameters
    Type Name Description
    string name

    Layer name

    object[] inputs

    input nodes

    Returns
    Type Description
    Layer

    created Layer instance

    MaxPool2D(string, object, int[], int[], int[])

    Apply 'max' pooling by downscaling H and W dimension according to pool, stride and pad. Pool and stride should be of size 2 and format is [W, H]. Pad should be of size 4 and format is [pre W, pre H, post W, post H].

    Output batch and channels dimensions the same as input. output.shape[H,W] = (input.shape[H,W] + pad[1,0] + pad[3,2] - pool[1,0]) / stride[1,0] + 1.

    Declaration
    public Layer MaxPool2D(string name, object input, int[] pool, int[] stride, int[] pad)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    int[] pool

    pooling

    int[] stride

    stride

    int[] pad

    padding

    Returns
    Type Description
    Layer

    created Layer instance

    Mean(string, object[])

    Element-wise mean of each of the input tensors with multidimensional broadcasting support.

    Declaration
    public Layer Mean(string name, object[] inputs)
    Parameters
    Type Name Description
    string name

    Layer name

    object[] inputs

    input nodes

    Returns
    Type Description
    Layer

    created Layer instance

    Memory(object, object, TensorShape)

    Add memory to the model

    Declaration
    public Model.Memory Memory(object input, object output, TensorShape shape)
    Parameters
    Type Name Description
    object input

    reference input object, could be string, Layer or Model.Input

    object output

    reference output object, could be string, Layer or Model.Input

    TensorShape shape

    memory shape

    Returns
    Type Description
    Model.Memory

    Memory instance

    Min(string, object[])

    Element-wise min of each of the input tensors with multidimensional broadcasting support.

    Declaration
    public Layer Min(string name, object[] inputs)
    Parameters
    Type Name Description
    string name

    Layer name

    object[] inputs

    input nodes

    Returns
    Type Description
    Layer

    created Layer instance

    Mul(string, object[])

    Element-wise multiplication of each of the input tensors with multidimensional broadcasting support.

    Declaration
    public Layer Mul(string name, object[] inputs)
    Parameters
    Type Name Description
    string name

    Layer name

    object[] inputs

    input nodes

    Returns
    Type Description
    Layer

    created Layer instance

    Multinomial(string, object, int, float)

    Generate a Tensor with random samples drawn from a multinomial distribution according to the probabilities of each of the possible outcomes. Output batch is same as input. Output channel is numberOfSamplesDrawnPerInputChannel.

    Declaration
    public Layer Multinomial(string name, object input, int numberOfSamplesDrawnPerInputChannel, float seed)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    int numberOfSamplesDrawnPerInputChannel

    number of samples drawn per input channel

    float seed

    seed

    Returns
    Type Description
    Layer

    created Layer instance

    Neg(string, object)

    Element-wise function that flips the sign of the input: f(x) = -x

    Declaration
    public Layer Neg(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    NonMaxSuppression(string, object, object, object, object, object, int)

    Filter out boxes that have high intersection-over-union (IOU) overlap with previously selected boxes. Bounding boxes with score less than scoreThreshold are removed.

    Declaration
    public Layer NonMaxSuppression(string name, object boxes, object scores, object maxOutputBoxesPerClass, object iouThreshold, object scoreThreshold, int centerPointBox)
    Parameters
    Type Name Description
    string name

    Layer name

    object boxes

    boxes input node

    object scores

    scores input node

    object maxOutputBoxesPerClass

    max output boxes per class input node

    object iouThreshold

    IOU threshold input node

    object scoreThreshold

    score input node

    int centerPointBox

    center point box

    Returns
    Type Description
    Layer

    created Layer instance

    NonZero(string, object)

    Returns the indices of the elements that are non-zero For example an input tensor of shape(1,2,3,1): [0, 2, 3], [4, 1, 0]

    Would return a tensor of shape(2, 1, 1, 4) N = 2 as the rank of input tensor is 2. C = 4 as there exist 3 non zero value in input tensor. [0, 0, 1, 1], [1, 2, 0, 1]

    Declaration
    public Layer NonZero(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    Normalization(string, object, Tensor, Tensor, float)

    Carries out instance normalization as described in the paper https://arxiv.org/abs/1607.08022 y = scale * (x - mean) / sqrt(variance + epsilon) + bias, where mean and variance are computed per instance per channel. Scale and bias should be tensors of shape [1,1,1, input.shape[C]]

    Output shape is same as input.

    Declaration
    public Layer Normalization(string name, object input, Tensor scale, Tensor bias, float epsilon = 1E-05)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Tensor scale

    scale

    Tensor bias

    bias

    float epsilon

    epsilon

    Returns
    Type Description
    Layer

    created Layer instance

    OneHot(string, object, int, int, int)

    Maps integer to one-hot vector of length equal to depth.

    Declaration
    public Layer OneHot(string name, object input, int depth, int on, int off)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    int depth

    depth

    int on

    on value

    int off

    off value

    Returns
    Type Description
    Layer

    created Layer instance

    Output(object)

    Add an output to the model

    Declaration
    public string Output(object input)
    Parameters
    Type Name Description
    object input

    reference object, could be string, Layer or Model.Input

    Returns
    Type Description
    string

    Output instance

    PRelu(string, object, object)

    Element-wise PRelu activation function: f(x) = x if x >= 0 else slope * x

    Declaration
    public Layer PRelu(string name, object input, object slope)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    object slope

    slope input node

    Returns
    Type Description
    Layer

    created Layer instance

    Pad2DEdge(string, object, int[])

    Pads H and W dimension by repeating the edge values of the input. Pad should be of size 4 and format is [pre W, pre H, post W, post H].

    For example a tensor of shape(1,2,3,1): [1, 2, 3], [4, 5, 6]

    With pad [2, 1, 2, 1]

    Result in a tensor of shape(1,4,7,1) [1, 1, 1, 2, 3, 3, 3], [1, 1, 1, 2, 3, 3, 3], [4, 4, 4, 5, 6, 6, 6], [4, 4, 4, 5, 6, 6, 6]

    Declaration
    public Layer Pad2DEdge(string name, object input, int[] pad)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    int[] pad

    padding

    Returns
    Type Description
    Layer

    created Layer instance

    Pad2DReflect(string, object, int[])

    Pads H and W dimension by mirroring on the first and last values along those axis. Pad should be of size 4 and format is [pre W, pre H, post W, post H].

    For example a tensor of shape(1,2,3,1): [1, 2, 3], [4, 5, 6]

    With pad [2, 1, 2, 1]

    Result in a tensor of shape(1,4,7,1) [6, 5, 4, 5, 6, 5, 4], [3, 2, 1, 2, 3, 2, 1], [6, 5, 4, 5, 6, 5, 4], [3, 2, 1, 2, 3, 2, 1]

    Declaration
    public Layer Pad2DReflect(string name, object input, int[] pad)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    int[] pad

    padding

    Returns
    Type Description
    Layer

    created Layer instance

    Pad2DSymmetric(string, object, int[])

    Pads H and W dimension with symmetric replication along those axis. Pad should be of size 4 and format is [pre W, pre H, post W, post H].

    For example a tensor of shape(1,2,3,1): [1, 2, 3], [4, 5, 6]

    With pad [2, 1, 2, 1]

    Result in a tensor of shape(1,4,7,1) [2, 1, 1, 2, 3, 3, 2], [2, 1, 1, 2, 3, 3, 2], [5, 4, 4, 5, 6, 6, 5], [5, 4, 4, 5, 6, 6, 5]

    Declaration
    public Layer Pad2DSymmetric(string name, object input, int[] pad)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    int[] pad

    padding

    Returns
    Type Description
    Layer

    created Layer instance

    Pow(string, object, float)

    Element-wise Pow activation function: f(x) = pow(x, alpha)

    Declaration
    public Layer Pow(string name, object input, float alpha)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    float alpha

    power input will be raised to

    Returns
    Type Description
    Layer

    created Layer instance

    Pow(string, object[])

    Element-wise pow of each of the input tensors with multidimensional broadcasting support. First element get raised to the pow of the 2nd, then result is raised to the pow of the third one and so on.

    Declaration
    public Layer Pow(string name, object[] inputs)
    Parameters
    Type Name Description
    string name

    Layer name

    object[] inputs

    input nodes

    Returns
    Type Description
    Layer

    created Layer instance

    RandomNormal(string, object, float, float, float)

    Generates a Tensor with random values drawn from a normal distribution. The shape of the tensor is specified by input tensor The normal distribution is specified by mean and scale

    Declaration
    public Layer RandomNormal(string name, object input, float mean, float scale, float seed)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    float mean

    mean

    float scale

    scale

    float seed

    seed

    Returns
    Type Description
    Layer

    created Layer instance

    RandomNormal(string, TensorShape, float, float, float)

    Generates a Tensor with random values drawn from a normal distribution. The shape of the tensor is specified by scale The normal distribution is specified by mean and scale

    Declaration
    public Layer RandomNormal(string name, TensorShape shape, float mean, float scale, float seed)
    Parameters
    Type Name Description
    string name

    Layer name

    TensorShape shape

    shape

    float mean

    mean

    float scale

    scale

    float seed

    seed

    Returns
    Type Description
    Layer

    created Layer instance

    RandomUniform(string, object, float, float, float)

    Generates a Tensor with random values drawn from a uniform distribution. The shape of the tensor is specified by input tensor The uniform distribution scale is specified by min and max range

    Declaration
    public Layer RandomUniform(string name, object input, float min, float max, float seed)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    float min

    min

    float max

    max

    float seed

    seed

    Returns
    Type Description
    Layer

    created Layer instance

    RandomUniform(string, TensorShape, float, float, float)

    Generates a Tensor with random values drawn from a uniform distribution. The shape of the tensor is specified by shape The uniform distribution scale is specified by min and max range

    Declaration
    public Layer RandomUniform(string name, TensorShape shape, float min, float max, float seed)
    Parameters
    Type Name Description
    string name

    Layer name

    TensorShape shape

    shape

    float min

    min

    float max

    max

    float seed

    seed

    Returns
    Type Description
    Layer

    created Layer instance

    Range(string, object, object, object)

    Generate a tensor containing a sequence of numbers that begin at start and extends by increments of delta up to limit (exclusive). the number of elements are defined as follows: number_of_elements = max( ceil( (limit - start) / delta ) , 0 ) output is calculated as follows: output[i] = start + (i * delta)

    Declaration
    public Layer Range(string name, object start, object limit, object delta)
    Parameters
    Type Name Description
    string name

    Layer name

    object start

    start

    object limit

    limit

    object delta

    delta

    Returns
    Type Description
    Layer

    created Layer instance

    Reciprocal(string, object)

    Element-wise function that calculates reciprocal of the input: f(x) = 1/x

    Declaration
    public Layer Reciprocal(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    Reduce(Type, string, object, int, bool, int)

    Computes a reduce operation (max/min/mean/prod/sum) of the input tensor's element along the provided axis If axisIs8D==true axis rank is from [S,R,N,T,D,H,W,C] overwise from [N,H,W,C] axis must be superior to -4 axis must be inferior to 8 when axisIs8D==true or inferior to 4 if axisIs8D==false

    Declaration
    public Layer Reduce(Layer.Type type, string name, object input, int axis = -1, bool axisIs8D = false, int keepDims = 1)
    Parameters
    Type Name Description
    Layer.Type type

    operation type

    string name

    Layer name

    object input

    input node

    int axis

    axis

    bool axisIs8D

    is axis 8D

    int keepDims

    is shape rank reduced

    Returns
    Type Description
    Layer

    created Layer instance

    Relu(string, object)

    Element-wise Relu activation function: f(x) = max(0, x)

    Declaration
    public Layer Relu(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    Relu6(string, object)

    Element-wise Relu6 activation function. f(x) = min(max(x, 0), 6) see http://www.cs.utoronto.ca/~kriz/conv-cifar10-aug2010.pdf

    Declaration
    public Layer Relu6(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    Resample2D(string, object, int[], bool)

    Resample2D scales the input tensor to the given resolution (W=size[0], H=size[1]). bilinear allows to choose between nearest neighbour or bilinear sampling.

    Declaration
    public Layer Resample2D(string name, object input, int[] size, bool bilinear)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    int[] size

    size

    bool bilinear

    use bilinear

    Returns
    Type Description
    Layer

    created Layer instance

    Reshape(string, object, int[], int)

    Apply symbolic shape to input tensor. Symbolic shape can have up to one dimension specified as unknown (value -1).

    Declaration
    public Layer Reshape(string name, object input, int[] shape, int rank = -1)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    int[] shape

    shape

    int rank

    rank

    Returns
    Type Description
    Layer

    created Layer instance

    Reshape(string, object, object)

    Return a tensor of the shape given as tensor.

    Declaration
    public Layer Reshape(string name, object input, object shape)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    object shape

    shape

    Returns
    Type Description
    Layer

    created Layer instance

    Reshape(string, object, TensorShape)

    Apply shape to the input tensor. Number of elements in the shape must match number of elements in input tensor.

    Declaration
    public Layer Reshape(string name, object input, TensorShape shape)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    TensorShape shape

    shape

    Returns
    Type Description
    Layer

    created Layer instance

    RoiAlign(string, object, object, object, int, int, int, float)

    Performs RoiAlign as described in the Mask R-CNN paper

    Declaration
    public Layer RoiAlign(string name, object input, object rois, object batchIndices, int outputHeight, int outputWidth, int samplingRatio, float spatialScale)
    Parameters
    Type Name Description
    string name
    object input
    object rois
    object batchIndices
    int outputHeight

    outputHeight

    int outputWidth

    outputWidth

    int samplingRatio

    samplingRatio

    float spatialScale

    spatialScale

    Returns
    Type Description
    Layer

    output Tensor

    Round(string, object)

    Element-wise function that produces rounding of the input value: f(x) = round(x)

    Declaration
    public Layer Round(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    ScaleBias(string, object, Tensor, Tensor)

    Apply per channel scale and bias. Scale and bias should be tensors of shape [1,1,1, input.shape[C]]

    Output shape is same as input.

    Declaration
    public Layer ScaleBias(string name, object input, Tensor scale, Tensor bias)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Tensor scale

    scale data Tensor

    Tensor bias

    bias data Tensor

    Returns
    Type Description
    Layer

    created Layer instance

    ScatterND(string, object, object, object, ScatterNDReductionMode)

    Declaration
    public Layer ScatterND(string name, object input, object indices, object updates, Layer.ScatterNDReductionMode reductionType)
    Parameters
    Type Name Description
    string name
    object input
    object indices
    object updates
    Layer.ScatterNDReductionMode reductionType
    Returns
    Type Description
    Layer

    Selu(string, object, float, float)

    Element-wise Selu activation function: f(x) = gamma * x if x >= 0 else (alpha * e^x - alpha) alpha default is 1.67326 gamma default is 1.0507

    Declaration
    public Layer Selu(string name, object input, float alpha = 1.67326, float gamma = 1.0507)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    float alpha

    alpha

    float gamma

    gamma

    Returns
    Type Description
    Layer

    created Layer instance

    Shape(string, object, int)

    Takes a tensor as input and outputs a tensor containing the shape of the input tensor. Optionally, if an axis is specified, then it will return only that part of the shape.

    Declaration
    public Layer Shape(string name, object input, int axis = -1)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    int axis

    axis

    Returns
    Type Description
    Layer

    created Layer instance

    Sigmoid(string, object)

    Element-wise Sigmoid activation function: f(x) = 1/(1 + e^{-x})

    Declaration
    public Layer Sigmoid(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    Sign(string, object)

    Declaration
    public Layer Sign(string name, object input)
    Parameters
    Type Name Description
    string name
    object input
    Returns
    Type Description
    Layer

    Sin(string, object)

    Element-wise Sin activation function: f(x) = sin(x)

    Declaration
    public Layer Sin(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    Sinh(string, object)

    Element-wise Sinh activation function: f(x) = sinh(x)

    Declaration
    public Layer Sinh(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    Softmax(string, object, int, bool)

    Return the Softmax (normalized exponential) values of the input along provided axis. Thus output will be of shape of the input. If axisIs8D==true axis rank is from [S,R,N,T,D,H,W,C] otherwise from [N,H,W,C] axis must be superior to -4 axis must be inferior to 8 when axisIs8D==true or inferior to 4 if axisIs8D==false

    Declaration
    public Layer Softmax(string name, object input, int axis = 3, bool axisIs8D = false)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    int axis

    axis

    bool axisIs8D

    is axis 8D

    Returns
    Type Description
    Layer

    created Layer instance

    Softplus(string, object)

    Element-wise Softplus activation function: f(x) = ln(e^ + 1)

    Declaration
    public Layer Softplus(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    SpaceToDepth(string, object, int)

    SpaceToDepth rearranges blocks of [blocksize, blocksize] spatial data into depth.

    Declaration
    public Layer SpaceToDepth(string name, object source, int blocksize)
    Parameters
    Type Name Description
    string name

    Layer name

    object source

    input node

    int blocksize

    block size

    Returns
    Type Description
    Layer

    created Layer instance

    Sqrt(string, object)

    Element-wise Sqrt activation function

    Declaration
    public Layer Sqrt(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    StridedSlice(string, object, int[], int[], int[])

    Produces a slice of the input tensor along all axes. The following rules apply: begin=0, end=0, stride=1: copy the full range of elements from the given axis begin=A, end=B, stride=1: copy the range [A, B) (excluding the Bth element) from the given axis begin=A, end=B, stride=I: copy every Ith element in the range [A, B) from the given axis begin=N, end=N, stride=0: shrink axis to a single Nth element output.shape[] = (ends[] - starts[]) / max(1, stride[])

    Declaration
    public Layer StridedSlice(string name, object input, int[] starts, int[] ends, int[] strides)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    int[] starts

    starts

    int[] ends

    ends

    int[] strides

    strides

    Returns
    Type Description
    Layer

    created Layer instance

    Sub(string, object[])

    Element-wise sub of each of the input tensors with multidimensional broadcasting support.

    Declaration
    public Layer Sub(string name, object[] inputs)
    Parameters
    Type Name Description
    string name

    Layer name

    object[] inputs

    input nodes

    Returns
    Type Description
    Layer

    created Layer instance

    Swish(string, object)

    Element-wise Swish activation function. f(x) = sigmoid(x) * x = x/(1 + e^{-x}) see https://arxiv.org/abs/1710.05941

    Declaration
    public Layer Swish(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    Tan(string, object)

    Element-wise Tan activation function: f(x) = tan(x)

    Declaration
    public Layer Tan(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    Tanh(string, object)

    Element-wise Tanh activation function: f(x) = (1 - e^{-2x})/(1 + e^{-2x})

    Declaration
    public Layer Tanh(string name, object input)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    Returns
    Type Description
    Layer

    created Layer instance

    Tile(string, object, int[])

    Constructs a tensor by repeating the input tensor the number of times given by repeats For example input = [[1, 2], [3, 4]], repeats = [1, 2], Tile(input, repeats) = [[1, 2, 1, 2], [3, 4, 3, 4]]

    Declaration
    public Layer Tile(string name, object input, int[] repeats)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    int[] repeats

    tile repeats

    Returns
    Type Description
    Layer

    created Layer instance

    TopKIndices(string, object, object, int, bool, bool)

    Retrieve the indices for top-K largest or smallest elements along a specified axis.

    Declaration
    public Layer TopKIndices(string name, object input, object k, int axis, bool largest, bool sorted)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    object k

    k

    int axis

    axis

    bool largest

    largest

    bool sorted

    sorted

    Returns
    Type Description
    Layer

    created Layer instance

    TopKValues(string, object, object, int)

    Given the indices for top-K largest or smallest elements along a specified axis, return the values

    Declaration
    public Layer TopKValues(string name, object input, object indices, int axis)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    object indices

    indices node

    int axis

    axis

    Returns
    Type Description
    Layer

    created Layer instance

    Transpose(string, object, int[])

    Transpose

    Declaration
    public Layer Transpose(string name, object input, int[] permutations)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    int[] permutations

    list of axis permutations

    Returns
    Type Description
    Layer

    created Layer instance

    Upsample2D(string, object, int[], bool)

    Upsample the input tensor by scaling W and H by upsample[0] and upsample[1] respectively. bilinear allow to choose between nearest neighbor or bilinear upsampling.

    Declaration
    public Layer Upsample2D(string name, object input, int[] upsample, bool bilinear)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    int[] upsample

    upsampling

    bool bilinear

    use bilinear

    Returns
    Type Description
    Layer

    created Layer instance

    Upsample2D(string, object, object, bool)

    Upsample the input tensor

    Declaration
    public Layer Upsample2D(string name, object source, object scale, bool bilinear)
    Parameters
    Type Name Description
    string name

    Layer name

    object source

    source input node

    object scale

    scale input node

    bool bilinear

    use bilinear

    Returns
    Type Description
    Layer

    created Layer instance

    Upsample3D(string, object, int[], bool)

    Upsample the input tensor by scaling W,H and D by upsample[0], upsample[1] and upsample[2] respectively. trilinear allow to choose between nearest neighbor or trilinear upsampling.

    Declaration
    public Layer Upsample3D(string name, object input, int[] upsample, bool trilinear)
    Parameters
    Type Name Description
    string name

    Layer name

    object input

    input node

    int[] upsample

    scaling factors array [W,H,D]

    bool trilinear

    trilinear flag

    Returns
    Type Description
    Layer

    created Layer instance

    Upsample3D(string, object, object, bool)

    Upsample the input tensor by scaling W,H and D by scale[0], scale[1] and scale[2] respectively. trilinear allow to choose between nearest neighbor or trilinear upsampling.

    Declaration
    public Layer Upsample3D(string name, object source, object scale, bool trilinear)
    Parameters
    Type Name Description
    string name

    Layer name

    object source

    input node

    object scale

    scale Tensor

    bool trilinear

    trilinear flag

    Returns
    Type Description
    Layer

    created Layer instance

    Where(string, object, object, object)

    Return elements, either from X or Y, depending on condition (with broadcasting support, based on the shape of the condition) Return X elementwise if condition is true Y otherwise. Input is consider false if 0.0 elementwise true otherwise.

    Declaration
    public Layer Where(string name, object condition, object input1, object input2)
    Parameters
    Type Name Description
    string name

    Layer name

    object condition

    condition

    object input1

    first input

    object input2

    second input

    Returns
    Type Description
    Layer

    created Layer instance

    In This Article
    Back to top
    Copyright © 2025 Unity Technologies — Trademarks and terms of use
    • Legal
    • Privacy Policy
    • Cookie Policy
    • Do Not Sell or Share My Personal Information
    • Your Privacy Choices (Cookie Settings)