The following is a complete example of a custom NativeContainer
as an append-only list. It demonstrates basic protection of read and write operations, as well as creating and invalidating aliasing views. For another example, see the NativeContainerAttribute
API documentation.
using System;
using System.Runtime.InteropServices;
using Unity.Collections.LowLevel.Unsafe;
using Unity.Collections;
// Marks the struct as a NativeContainer. This tells the job system that it contains an AtomicSafetyHandle.
[NativeContainer]
public unsafe struct NativeAppendOnlyList<T> : IDisposable where T : unmanaged
{
// Raw pointers aren't usually allowed inside structures that are passed to jobs, but because it's protected
// with the safety system, you can disable that restriction for it
[NativeDisableUnsafePtrRestriction]
internal void* m_Buffer;
internal int m_Length;
internal Allocator m_AllocatorLabel;
// You should only declare and use safety system members with the ENABLE_UNITY_COLLECTIONS_CHECKS define.
// In final builds of projects, the safety system is disabled for performance reasons, so these APIs aren't
// available in those builds.
#if ENABLE_UNITY_COLLECTIONS_CHECKS
// The AtomicSafetyHandle field must be named exactly 'm_Safety'.
internal AtomicSafetyHandle m_Safety;
// Statically register this type with the safety system, using a name derived from the type itself
internal static readonly int s_staticSafetyId = AtomicSafetyHandle.NewStaticSafetyId<NativeAppendOnlyList<T>>();
#endif
public NativeAppendOnlyList(Allocator allocator, params T[] initialItems)
{
m_Length = initialItems.Length;
m_AllocatorLabel = allocator;
// Calculate the size of the initial buffer in bytes, and allocate it
int totalSize = UnsafeUtility.SizeOf<T>() * m_Length;
m_Buffer = UnsafeUtility.MallocTracked(totalSize, UnsafeUtility.AlignOf<T>(), m_AllocatorLabel, 1);
// Copy the data from the array into the buffer
var handle = GCHandle.Alloc(initialItems, GCHandleType.Pinned);
try
{
UnsafeUtility.MemCpy(m_Buffer, handle.AddrOfPinnedObject().ToPointer(), totalSize);
}
finally
{
handle.Free();
}
#if ENABLE_UNITY_COLLECTIONS_CHECKS
// Create the AtomicSafetyHandle and DisposeSentinel
m_Safety = AtomicSafetyHandle.Create();
// Set the safety ID on the AtomicSafetyHandle so that error messages describe this container type properly.
AtomicSafetyHandle.SetStaticSafetyId(ref m_Safety, s_staticSafetyId);
// Automatically bump the secondary version any time this container is scheduled for writing in a job
AtomicSafetyHandle.SetBumpSecondaryVersionOnScheduleWrite(m_Safety, true);
// Check if this is a nested container, and if so, set the nested container flag
if (UnsafeUtility.IsNativeContainerType<T>())
AtomicSafetyHandle.SetNestedContainer(m_Safety, true);
#endif
}
public int Length
{
get
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
// Check that you are allowed to read information about the container
// This throws InvalidOperationException if you aren't allowed to read from the native container,
// or if the native container has been disposed
AtomicSafetyHandle.CheckReadAndThrow(m_Safety);
#endif
return m_Length;
}
}
public T this[int index]
{
get
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
// Check that you can read from the native container right now.
AtomicSafetyHandle.CheckReadAndThrow(m_Safety);
#endif
// Read from the buffer and return the value
return UnsafeUtility.ReadArrayElement<T>(m_Buffer, index);
}
set
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
// Check that you can write to the native container right now.
AtomicSafetyHandle.CheckWriteAndThrow(m_Safety);
#endif
// Write the value into the buffer
UnsafeUtility.WriteArrayElement(m_Buffer, index, value);
}
}
public void Add(T value)
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
// Check that you can modify (write to) the native container right now, and if so, bump the secondary version so that
// any views are invalidated, because you are going to change the size and pointer to the buffer
AtomicSafetyHandle.CheckWriteAndBumpSecondaryVersion(m_Safety);
#endif
// Replace the current buffer with a new one that has space for an extra element
int newTotalSize = (m_Length + 1) * UnsafeUtility.SizeOf<T>();
void* newBuffer = UnsafeUtility.MallocTracked(newTotalSize, UnsafeUtility.AlignOf<T>(), m_AllocatorLabel, 1);
UnsafeUtility.MemCpy(newBuffer, m_Buffer, m_Length * UnsafeUtility.SizeOf<T>());
UnsafeUtility.FreeTracked(m_Buffer, m_AllocatorLabel);
m_Buffer = newBuffer;
// Put the new element at the end of the buffer and increase the length
UnsafeUtility.WriteArrayElement(m_Buffer, m_Length++, value);
}
public NativeArray<T> AsArray()
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
// Check that it's safe for you to use the buffer pointer to construct a view right now.
AtomicSafetyHandle.CheckGetSecondaryDataPointerAndThrow(m_Safety);
// Make a copy of the AtomicSafetyHandle, and mark the copy to use the secondary version instead of the primary
AtomicSafetyHandle handleForArray = m_Safety;
AtomicSafetyHandle.UseSecondaryVersion(ref handleForArray);
#endif
// Create a new NativeArray which aliases the buffer, using the current size. This doesn't allocate or copy
// any data, it just sets up a NativeArray<T> which points at the m_Buffer.
var array = NativeArrayUnsafeUtility.ConvertExistingDataToNativeArray<T>(m_Buffer, m_Length, Allocator.None);
#if ENABLE_UNITY_COLLECTIONS_CHECKS
// Set the AtomicSafetyHandle on the newly created NativeArray to be the one that you copied from your handle
// and made to use the secondary version.
NativeArrayUnsafeUtility.SetAtomicSafetyHandle(ref array, handleForArray);
#endif
return array;
}
public void Dispose()
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
AtomicSafetyHandle.CheckDeallocateAndThrow(m_Safety);
AtomicSafetyHandle.Release(m_Safety);
#endif
// Free the buffer
UnsafeUtility.FreeTracked(m_Buffer, m_AllocatorLabel);
m_Buffer = null;
m_Length = 0;
}
}
Did you find this page useful? Please give it a rating:
Thanks for rating this page!
What kind of problem would you like to report?
Thanks for letting us know! This page has been marked for review based on your feedback.
If you have time, you can provide more information to help us fix the problem faster.
Provide more information
You've told us this page needs code samples. If you'd like to help us further, you could provide a code sample, or tell us about what kind of code sample you'd like to see:
You've told us there are code samples on this page which don't work. If you know how to fix it, or have something better we could use instead, please let us know:
You've told us there is information missing from this page. Please tell us more about what's missing:
You've told us there is incorrect information on this page. If you know what we should change to make it correct, please tell us:
You've told us this page has unclear or confusing information. Please tell us more about what you found unclear or confusing, or let us know how we could make it clearer:
You've told us there is a spelling or grammar error on this page. Please tell us what's wrong:
You've told us this page has a problem. Please tell us more about what's wrong:
Thank you for helping to make the Unity documentation better!
Your feedback has been submitted as a ticket for our documentation team to review.
We are not able to reply to every ticket submitted.
When you visit any website, it may store or retrieve information on your browser, mostly in the form of cookies. This information might be about you, your preferences or your device and is mostly used to make the site work as you expect it to. The information does not usually directly identify you, but it can give you a more personalized web experience. Because we respect your right to privacy, you can choose not to allow some types of cookies. Click on the different category headings to find out more and change our default settings. However, blocking some types of cookies may impact your experience of the site and the services we are able to offer.
More information
These cookies enable the website to provide enhanced functionality and personalisation. They may be set by us or by third party providers whose services we have added to our pages. If you do not allow these cookies then some or all of these services may not function properly.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
These cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising. Some 3rd party video providers do not allow video views without targeting cookies. If you are experiencing difficulty viewing a video, you will need to set your cookie preferences for targeting to yes if you wish to view videos from these providers. Unity does not control this.
These cookies are necessary for the website to function and cannot be switched off in our systems. They are usually only set in response to actions made by you which amount to a request for services, such as setting your privacy preferences, logging in or filling in forms. You can set your browser to block or alert you about these cookies, but some parts of the site will not then work. These cookies do not store any personally identifiable information.