CollidersAn invisible shape that is used to handle physical collisions for an object. A collider doesn’t need to be exactly the same shape as the object’s mesh - a rough approximation is often more efficient and indistinguishable in gameplay. More info
See in Glossary define the physical boundaries of a RigidbodyA component that allows a GameObject to be affected by simulated gravity and other forces. More info
See in Glossary. To allow collisions to occur, you must add Colliders to a GameObjectThe fundamental object in Unity scenes, which can represent characters, props, scenery, cameras, waypoints, and more. A GameObject’s functionality is defined by the Components attached to it. More info
See in Glossary alongside a Rigidbody.
If one Rigidbody collides with another, the physics engineA system that simulates aspects of physical systems so that objects can accelerate correctly and be affected by collisions, gravity and other forces. More info
See in Glossary only calculates a collision if both GameObjects have a Collider attached. If one GameObject has a Rigidbody but no Collider, it passes through other GameObjects, and Unity does not include it in collision calculations.
The relative Mass of each Rigidbody in a collision determines how they react when they collide with each other.
See CollisionA collision occurs when the physics engine detects that the colliders of two GameObjects make contact or overlap, when at least one has a Rigidbody component and is in motion. More info
See in Glossary for more information.
The PhysX physics system requires that any collider you place on a non-kinematic Rigidbody is convex, not concave. All primitive shapes in Unity are convex. However, Unity considers a Mesh ColliderA free-form collider component which accepts a mesh reference to define its collision surface shape. More info
See in Glossary concave by default.
If you apply a default MeshThe main graphics primitive of Unity. Meshes make up a large part of your 3D worlds. Unity supports triangulated or Quadrangulated polygon meshes. Nurbs, Nurms, Subdiv surfaces must be converted to polygons. More info
See in Glossary Collider to a non-kinematic Rigidbody, Unity throws an error at runtime. To ensure that your non-kinematic Rigidbody receives physics-based forces, you need to instruct Unity to make the Mesh Collider convex. To do this, enable the Mesh Collider’s Convex property. When Convex is enabled, Unity automatically calculates a convex collider shape (called a hull) based on the associated mesh. However, because the convex hull of the mesh is only an approximation of the original shape, it can lead to inaccurate simulation.
For a more accurate collision simulation, you can use one of the following approaches:
If a Rigidbody is kinematic (that is, it receives no physics-based forces), you can apply any collider to it.
When you visit any website, it may store or retrieve information on your browser, mostly in the form of cookies. This information might be about you, your preferences or your device and is mostly used to make the site work as you expect it to. The information does not usually directly identify you, but it can give you a more personalized web experience. Because we respect your right to privacy, you can choose not to allow some types of cookies. Click on the different category headings to find out more and change our default settings. However, blocking some types of cookies may impact your experience of the site and the services we are able to offer.
More information
These cookies enable the website to provide enhanced functionality and personalisation. They may be set by us or by third party providers whose services we have added to our pages. If you do not allow these cookies then some or all of these services may not function properly.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
These cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising. Some 3rd party video providers do not allow video views without targeting cookies. If you are experiencing difficulty viewing a video, you will need to set your cookie preferences for targeting to yes if you wish to view videos from these providers. Unity does not control this.
These cookies are necessary for the website to function and cannot be switched off in our systems. They are usually only set in response to actions made by you which amount to a request for services, such as setting your privacy preferences, logging in or filling in forms. You can set your browser to block or alert you about these cookies, but some parts of the site will not then work. These cookies do not store any personally identifiable information.