To ensure your application runs with no performance issues, it’s important to understand how Unity uses and allocates memory. This section of the documentation explains how memory works in Unity, and is intended for readers who want to understand how they can improve the memory performance of their application.
Unity uses three memory management layers to handle memory in your application:
Mono and IL2CPP’s scripting virtual machines (VMs) implement the managed memory system, which is sometimes referred to as the scripting memory system. These VMs offer a controlled memory environment divided into the following different types:
Because the managed memory system uses VMs, it has a controlled environment that automatically tracks the references of allocations to manage their lifetime. This means that it’s less likely for your application to release memory too early, while other code is trying to access it. It also means that you have some safeguard against memory leaks that happen when memory is inaccessible from code, or from unused memory piling up.
Using managed memory in Unity is the easiest way to manage the memory in your application; but it has some disadvantages. The garbage collector is convenient to use, but it’s also unpredictable in how it releases and allocates memory, which might lead to performance issues such as stuttering, which happens when the garbage collector has to stop to release and allocate memory. To work around this unpredictability, you can use the C# unmanaged memory layer.
For more information on how managed memory works see the documentation on Managed memory.
The C# unmanaged memory layer allows you to access the native memory layer to fine-tune memory allocations, with the convenience of writing C# code.
You can use the Unity.Collections
namespace (including NativeArray) in the Unity core API, and the data structures in the Unity Collections package to access C# unmanaged memory. If you use Unity’s C# Job system, or Burst, you must use C# unmanaged memory. For more information about this, see the documentation on the Job system and Burst.
The Unity engine’s internal C/C++ core has its own memory management system, which is referred to as native memory. In most situations, you can’t directly access or modify this memory type.
Unity stores the scenesA Scene contains the environments and menus of your game. Think of each unique Scene file as a unique level. In each Scene, you place your environments, obstacles, and decorations, essentially designing and building your game in pieces. More info
See in Glossary in your project, assets, graphics APIs, graphics drivers, subsystem and plug-inA set of code created outside of Unity that creates functionality in Unity. There are two kinds of plug-ins you can use in Unity: Managed plug-ins (managed .NET assemblies created with tools like Visual Studio) and Native plug-ins (platform-specific native code libraries). More info
See in Glossary buffers, and allocations inside native memory, which means that you can indirectly access the native memory via Unity’s C# API. This means that you can manipulate the data for your application in a safe and easy way, without losing the benefits of the native and performant code that’s at Unity’s native core.
Most of the time, you won’t need to interact with Unity’s native memory, but you can see how it affects the performance of your application whenever you use the Profiler, through Profiler markersPlaced in code to describe a CPU or GPU event that is then displayed in the Unity Profiler window. Added to Unity code by default, or you can use ProfilerMarker API to add your own custom markers. More info
See in Glossary.
When you visit any website, it may store or retrieve information on your browser, mostly in the form of cookies. This information might be about you, your preferences or your device and is mostly used to make the site work as you expect it to. The information does not usually directly identify you, but it can give you a more personalized web experience. Because we respect your right to privacy, you can choose not to allow some types of cookies. Click on the different category headings to find out more and change our default settings. However, blocking some types of cookies may impact your experience of the site and the services we are able to offer.
More information
These cookies enable the website to provide enhanced functionality and personalisation. They may be set by us or by third party providers whose services we have added to our pages. If you do not allow these cookies then some or all of these services may not function properly.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
These cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising. Some 3rd party video providers do not allow video views without targeting cookies. If you are experiencing difficulty viewing a video, you will need to set your cookie preferences for targeting to yes if you wish to view videos from these providers. Unity does not control this.
These cookies are necessary for the website to function and cannot be switched off in our systems. They are usually only set in response to actions made by you which amount to a request for services, such as setting your privacy preferences, logging in or filling in forms. You can set your browser to block or alert you about these cookies, but some parts of the site will not then work. These cookies do not store any personally identifiable information.