A Cubemap is a collection of six square textures that represent the reflections on an environment. The six squares form the faces of an imaginary cube that surrounds an object; each face represents the view along the directions of the world axes (up, down, left, right, forward and back).
Cubemaps are often used to capture reflections or “surroundings” of objects; for example skyboxes and environment reflections often use cubemaps.
The fastest way to create cubemaps is to import them from specially laid out TexturesAn image used when rendering a GameObject, Sprite, or UI element. Textures are often applied to the surface of a mesh to give it visual detail. More info
See in Glossary.
Select the Texture in the Project windowA window that shows the contents of your Assets
folder (Project tab) More info
See in Glossary, to see the Import Settings in the InspectorA Unity window that displays information about the currently selected GameObject, asset or project settings, allowing you to inspect and edit the values. More info
See in Glossary window. In the Import Settings, set the Texture Type to Default, Normal MapA type of Bump Map texture that allows you to add surface detail such as bumps, grooves, and scratches to a model which catch the light as if they are represented by real geometry.
See in Glossary or Single Channel, and the Texture Shape to Cube. Unity then automatically sets the Texture up as a Cubemap.
Several commonly-used cubemap layouts are supported (and in most cases, Unity detects them automatically).
Vertical and horizontal cross layouts, as well as column and row of cubemap faces are supported:
Another common layout is LatLong
(Latitude-Longitude, sometimes called cylindrical). Panorama images are
often in this layout:
SphereMap
(spherical environment map) images can also be found:
By default Unity looks at the aspect ratioThe relationship of an image’s proportional dimensions, such as its width and height.
See in Glossary of the imported texture to determine the most appopriate layout from
the above. When imported, a cubemap is produced which can be used for skyboxes and reflections:
Selecting Glossy Reflection
option is useful for cubemap textures that will be used by
Reflection ProbesA rendering component that captures a spherical view of its surroundings in all directions, rather like a camera. The captured image is then stored as a Cubemap that can be used by objects with reflective materials. More info
See in Glossary. It processed cubemap mip levels in a special way
(specular convolution) that can be used to simulate reflections from surfaces of different smoothness:
Unity also supports creating cubemaps out of six separate textures. Select Assets > Create > Legacy > Cubemap from the menu, and drag six textures into empty slots in the inspector.
Property: | Function: |
---|---|
Right..Back Slots | Textures for the corresponding cubemap face. |
Face Size | Width and Height of each Cubemap face in pixelsThe smallest unit in a computer image. Pixel size depends on your screen resolution. Pixel lighting is calculated at every screen pixel. More info See in Glossary. The textures will be scaled automatically to fit this size. |
Mipmap | Should mipmaps be created? |
Linear | Should the cubemap use linear color? |
Readable | Should the cubemap allow scriptsA piece of code that allows you to create your own Components, trigger game events, modify Component properties over time and respond to user input in any way you like. More info See in Glossary to access the pixel data? |
Note that it is preferred to create cubemaps using the Cubemap texture import type (see above) - this
way cubemap texture data can be compressed; edge fixups and glossy reflection convolution be performed;
and HDRhigh dynamic range
See in Glossary cubemaps are supported.
Another useful technique is to generate the cubemap from the contents of a Unity sceneA Scene contains the environments and menus of your game. Think of each unique Scene file as a unique level. In each Scene, you place your environments, obstacles, and decorations, essentially designing and building your game in pieces. More info
See in Glossary using a script.
The Camera.RenderToCubemap function can record the six face
images from any desired position in the scene; the code example on the function’s script reference page
adds a menu command to make this task easy.
2018–01–31 Page amended
Cubemap
When you visit any website, it may store or retrieve information on your browser, mostly in the form of cookies. This information might be about you, your preferences or your device and is mostly used to make the site work as you expect it to. The information does not usually directly identify you, but it can give you a more personalized web experience. Because we respect your right to privacy, you can choose not to allow some types of cookies. Click on the different category headings to find out more and change our default settings. However, blocking some types of cookies may impact your experience of the site and the services we are able to offer.
More information
These cookies enable the website to provide enhanced functionality and personalisation. They may be set by us or by third party providers whose services we have added to our pages. If you do not allow these cookies then some or all of these services may not function properly.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
These cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising. Some 3rd party video providers do not allow video views without targeting cookies. If you are experiencing difficulty viewing a video, you will need to set your cookie preferences for targeting to yes if you wish to view videos from these providers. Unity does not control this.
These cookies are necessary for the website to function and cannot be switched off in our systems. They are usually only set in response to actions made by you which amount to a request for services, such as setting your privacy preferences, logging in or filling in forms. You can set your browser to block or alert you about these cookies, but some parts of the site will not then work. These cookies do not store any personally identifiable information.