Version: 2018.3 (switch to 2019.1 )
Language: English
Surface Shader lighting examples
Writing vertex and fragment shaders
Other Versions

# Surface Shaders with DX11 / OpenGL Core Tessellation

have some support for DirectX 11 / GPU Tessellation. Idea is:

• Tessellation is indicated by `tessellate:FunctionName` modifier. That function computes triangle edge and inside tessellation factors.
• When tessellation is used, “vertex modifier” (`vertex:FunctionName`) is invoked after tessellation, for each generated vertex in the domain . Here you’d typically to displacement mapping.
• Surface shaders can optionally compute phong tessellation to smooth model surface even without any displacement mapping.

Current limitations of tessellation support:

• Only triangle domain - no , no isoline tessellation.
• When you use tessellation, the shader is automatically compiled into the Shader Model 4.6 target, which prevents support for running on older graphics targets.

## No GPU tessellation, displacement in the vertex modifier

This next example shows a surface shader that does some displacement mapping without using tessellation. It just moves vertices along their normals based on the amount coming from a displacement map:

``````    Shader "Tessellation Sample" {
Properties {
_MainTex ("Base (RGB)", 2D) = "white" {}
_DispTex ("Disp Texture", 2D) = "gray" {}
_NormalMap ("Normalmap", 2D) = "bump" {}
_Displacement ("Displacement", Range(0, 1.0)) = 0.3
_Color ("Color", color) = (1,1,1,0)
_SpecColor ("Spec color", color) = (0.5,0.5,0.5,0.5)
}
Tags { "RenderType"="Opaque" }
LOD 300

CGPROGRAM
#pragma target 4.6

struct appdata {
float4 vertex : POSITION;
float4 tangent : TANGENT;
float3 normal : NORMAL;
float2 texcoord : TEXCOORD0;
};

sampler2D _DispTex;
float _Displacement;

void disp (inout appdata v)
{
float d = tex2Dlod(_DispTex, float4(v.texcoord.xy,0,0)).r * _Displacement;
v.vertex.xyz += v.normal * d;
}

struct Input {
float2 uv_MainTex;
};

sampler2D _MainTex;
sampler2D _NormalMap;
fixed4 _Color;

void surf (Input IN, inout SurfaceOutput o) {
half4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;
o.Albedo = c.rgb;
o.Specular = 0.2;
o.Gloss = 1.0;
o.Normal = UnpackNormal(tex2D(_NormalMap, IN.uv_MainTex));
}
ENDCG
}
FallBack "Diffuse"
}
``````

The above shader is fairly standard:

• Vertex modifier `disp` samples the displacement map and moves vertices along their normals.
• It uses custom “vertex data input” structure (`appdata`) instead of default `appdata_full`. This is not needed yet, but it’s more efficient for tessellation to use as small structure as possible.
• Since our vertex data does not have 2nd UV coordinate, we add `nolightmap` directive to exclude .

The image below displays some simple with this shader applied.

## Fixed amount of tessellation

If your model’s faces are roughly the same size on screen, add a fixed amount of tesselation to the (the same tessellation level over the whole Mesh).

The following example script applies a fixed amount of tessellation.

``````    Shader "Tessellation Sample" {
Properties {
_Tess ("Tessellation", Range(1,32)) = 4
_MainTex ("Base (RGB)", 2D) = "white" {}
_DispTex ("Disp Texture", 2D) = "gray" {}
_NormalMap ("Normalmap", 2D) = "bump" {}
_Displacement ("Displacement", Range(0, 1.0)) = 0.3
_Color ("Color", color) = (1,1,1,0)
_SpecColor ("Spec color", color) = (0.5,0.5,0.5,0.5)
}
Tags { "RenderType"="Opaque" }
LOD 300

CGPROGRAM
#pragma target 4.6

struct appdata {
float4 vertex : POSITION;
float4 tangent : TANGENT;
float3 normal : NORMAL;
float2 texcoord : TEXCOORD0;
};

float _Tess;

float4 tessFixed()
{
return _Tess;
}

sampler2D _DispTex;
float _Displacement;

void disp (inout appdata v)
{
float d = tex2Dlod(_DispTex, float4(v.texcoord.xy,0,0)).r * _Displacement;
v.vertex.xyz += v.normal * d;
}

struct Input {
float2 uv_MainTex;
};

sampler2D _MainTex;
sampler2D _NormalMap;
fixed4 _Color;

void surf (Input IN, inout SurfaceOutput o) {
half4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;
o.Albedo = c.rgb;
o.Specular = 0.2;
o.Gloss = 1.0;
o.Normal = UnpackNormal(tex2D(_NormalMap, IN.uv_MainTex));
}
ENDCG
}
FallBack "Diffuse"
}
``````

In the example above, the `tessFixed` tessellation function returns four tessellation factors as a single float4 value: three factors for each edge of the triangle, and one factor for the inside of the triangle.

The example returns a constant value that is set in the Material properties.

## Distance-based tessellation

You can also change tessellation level based on distance from the . For example, you could define two distance values:

• The distance when tessellation is at maximum (for example, 10 meters).
• The distance when the tessellation level gradually decreases (for example, 20 meters).
``````    Shader "Tessellation Sample" {
Properties {
_Tess ("Tessellation", Range(1,32)) = 4
_MainTex ("Base (RGB)", 2D) = "white" {}
_DispTex ("Disp Texture", 2D) = "gray" {}
_NormalMap ("Normalmap", 2D) = "bump" {}
_Displacement ("Displacement", Range(0, 1.0)) = 0.3
_Color ("Color", color) = (1,1,1,0)
_SpecColor ("Spec color", color) = (0.5,0.5,0.5,0.5)
}
Tags { "RenderType"="Opaque" }
LOD 300

CGPROGRAM
#pragma target 4.6
#include "Tessellation.cginc"

struct appdata {
float4 vertex : POSITION;
float4 tangent : TANGENT;
float3 normal : NORMAL;
float2 texcoord : TEXCOORD0;
};

float _Tess;

float4 tessDistance (appdata v0, appdata v1, appdata v2) {
float minDist = 10.0;
float maxDist = 25.0;
return UnityDistanceBasedTess(v0.vertex, v1.vertex, v2.vertex, minDist, maxDist, _Tess);
}

sampler2D _DispTex;
float _Displacement;

void disp (inout appdata v)
{
float d = tex2Dlod(_DispTex, float4(v.texcoord.xy,0,0)).r * _Displacement;
v.vertex.xyz += v.normal * d;
}

struct Input {
float2 uv_MainTex;
};

sampler2D _MainTex;
sampler2D _NormalMap;
fixed4 _Color;

void surf (Input IN, inout SurfaceOutput o) {
half4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;
o.Albedo = c.rgb;
o.Specular = 0.2;
o.Gloss = 1.0;
o.Normal = UnpackNormal(tex2D(_NormalMap, IN.uv_MainTex));
}
ENDCG
}
FallBack "Diffuse"
}
``````

Here, the tessellation function takes the vertex data of the three triangle corners before tessellation as its three parameters.

Unity needs this to compute tessellation levels, which depend on vertex positions.

The example includes a built-in helper file, Tessellation.cginc, and calls the `UnityDistanceBasedTess` function from the file to do all the work. This function computes the distance of each vertex to the camera and derives the final tessellation factors.

## Edge length based tessellation

Purely distance based tessellation is effective only when triangle sizes are quite similar. In the image above, the GameObjects that have small triangles are tessellated too much, while GameObjects that have large triangles aren’t tessellated enough.

One way to improve this is to compute tessellation levels based on triangle edge length on the screen. Unity should apply a larger tessellation factor to longer edges.

``````    Shader "Tessellation Sample" {
Properties {
_EdgeLength ("Edge length", Range(2,50)) = 15
_MainTex ("Base (RGB)", 2D) = "white" {}
_DispTex ("Disp Texture", 2D) = "gray" {}
_NormalMap ("Normalmap", 2D) = "bump" {}
_Displacement ("Displacement", Range(0, 1.0)) = 0.3
_Color ("Color", color) = (1,1,1,0)
_SpecColor ("Spec color", color) = (0.5,0.5,0.5,0.5)
}
Tags { "RenderType"="Opaque" }
LOD 300

CGPROGRAM
#pragma target 4.6
#include "Tessellation.cginc"

struct appdata {
float4 vertex : POSITION;
float4 tangent : TANGENT;
float3 normal : NORMAL;
float2 texcoord : TEXCOORD0;
};

float _EdgeLength;

float4 tessEdge (appdata v0, appdata v1, appdata v2)
{
return UnityEdgeLengthBasedTess (v0.vertex, v1.vertex, v2.vertex, _EdgeLength);
}

sampler2D _DispTex;
float _Displacement;

void disp (inout appdata v)
{
float d = tex2Dlod(_DispTex, float4(v.texcoord.xy,0,0)).r * _Displacement;
v.vertex.xyz += v.normal * d;
}

struct Input {
float2 uv_MainTex;
};

sampler2D _MainTex;
sampler2D _NormalMap;
fixed4 _Color;

void surf (Input IN, inout SurfaceOutput o) {
half4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;
o.Albedo = c.rgb;
o.Specular = 0.2;
o.Gloss = 1.0;
o.Normal = UnpackNormal(tex2D(_NormalMap, IN.uv_MainTex));
}
ENDCG
}
FallBack "Diffuse"
}
``````

In this example, you call the `UnityEdgeLengthBasedTess` function from Tessellation.cginc to do all the work.

For performance reasons, call the UnityEdgeLengthBasedTessCull function instead, which performs patch frustum culling. This makes the shader a bit more expensive, but saves a lot of GPU work for parts of meshes that are outside of the Camera’s view.

## Phong Tessellation

Phong Tessellation modifies positions of the subdivided faces so that the resulting surface follows the mesh normals a bit. It’s quite an effective way of making low-poly meshes become more smooth.

Unity’s surface shaders can compute Phong tessellation automatically using `tessphong:VariableName` compilation directive. Here’s an example shader:

``````    Shader "Phong Tessellation" {
Properties {
_EdgeLength ("Edge length", Range(2,50)) = 5
_Phong ("Phong Strengh", Range(0,1)) = 0.5
_MainTex ("Base (RGB)", 2D) = "white" {}
_Color ("Color", color) = (1,1,1,0)
}
Tags { "RenderType"="Opaque" }
LOD 300

CGPROGRAM
#pragma surface surf Lambert vertex:dispNone tessellate:tessEdge tessphong:_Phong nolightmap
#include "Tessellation.cginc"

struct appdata {
float4 vertex : POSITION;
float3 normal : NORMAL;
float2 texcoord : TEXCOORD0;
};

void dispNone (inout appdata v) { }

float _Phong;
float _EdgeLength;

float4 tessEdge (appdata v0, appdata v1, appdata v2)
{
return UnityEdgeLengthBasedTess (v0.vertex, v1.vertex, v2.vertex, _EdgeLength);
}

struct Input {
float2 uv_MainTex;
};

fixed4 _Color;
sampler2D _MainTex;

void surf (Input IN, inout SurfaceOutput o) {
half4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;
o.Albedo = c.rgb;
o.Alpha = c.a;
}

ENDCG
}
FallBack "Diffuse"
}
``````

Here is a comparison between a regular shader (top row) and one that uses Phong tessellation (bottom row). See that even without any displacement mapping, the surface becomes more round.

• 2018–03–20 Page amended with editorial review
• Tessellation for Metal added in 2018.1

Did you find this page useful? Please give it a rating:

Surface Shader lighting examples
Writing vertex and fragment shaders