드로우 커맨드를 생성하려면 BatchRendererGroup.OnPerformCulling 콜백을 사용하십시오.구체적으로 말하자면 콜백의 BatchCullingOutput 파라미터를 사용합니다.이 파라미터에는 하나의 요소가 포함된 NativeArray가 있습니다.이 레이아웃을 통해 Unity가 불필요하게 데이터를 복사하지 않고도 배열 요소의 콘텐츠를 직접 수정할 수 있습니다.NativeArray의 요소는 실제 드로우 커맨드를 포함하는 BatchCullingOutputDrawCommands 구조체입니다.
OnPerformCulling을 구현하면 원하는 만큼의 드로우 커맨드를 생성할 수 있습니다.하나의 메시와 머티리얼만 사용하여 간단하게 구현하면 하나의 드로우 커맨드만 출력할 수 있지만, 각각 다른 메시와 머티리얼을 사용하여 더 복잡하게 구현하면 수천 개를 출력할 수 있습니다.
참고:최대한 유연하도록 Unity는 BatchCullingOutputDrawCommands 출력 구조체에 배열을 미리 할당하지 않고 원시 포인터로 저장하여 버스트 잡에서 쉽게 할당하고 사용할 수 있도록 합니다.Allocator.TempJob 할당자가 포함된 UnsafeUtility.Malloc을 사용하여 배열을 할당해야 합니다.콜백은 메모리를 해제하지 않아야 합니다.대신 Unity는 드로우 커맨드를 사용하여 렌더링을 완료한 후 메모리를 해제합니다.
드로우 커맨드 생성 방법의 예는 다음 코드 샘플을 참조하십시오.이 코드 샘플은 배치 생성에 있는 것을 기반으로 합니다.
using System;
using Unity.Collections;
using Unity.Collections.LowLevel.Unsafe;
using Unity.Jobs;
using UnityEngine;
using UnityEngine.Rendering;
public class SimpleBRGExample :MonoBehaviour
{
    public Mesh mesh;
    public Material material;
    private BatchRendererGroup m_BRG;
    private GraphicsBuffer m_InstanceData;
    private BatchID m_BatchID;
    private BatchMeshID m_MeshID;
    private BatchMaterialID m_MaterialID;
    // Some helper constants to make calculations more convenient.
    private const int kSizeOfMatrix = sizeof(float) * 4 * 4;
    private const int kSizeOfPackedMatrix = sizeof(float) * 4 * 3;
    private const int kSizeOfFloat4 = sizeof(float) * 4;
    private const int kBytesPerInstance = (kSizeOfPackedMatrix * 2) + kSizeOfFloat4;
    private const int kExtraBytes = kSizeOfMatrix * 2;
    private const int kNumInstances = 3;
    // The PackedMatrix is a convenience type that converts matrices into
    // the format that Unity-provided SRP shaders expect.
    struct PackedMatrix
    {
        public float c0x;
        public float c0y;
        public float c0z;
        public float c1x;
        public float c1y;
        public float c1z;
        public float c2x;
        public float c2y;
        public float c2z;
        public float c3x;
        public float c3y;
        public float c3z;
        public PackedMatrix(Matrix4x4 m)
        {
            c0x = m.m00;
            c0y = m.m10;
            c0z = m.m20;
            c1x = m.m01;
            c1y = m.m11;
            c1z = m.m21;
            c2x = m.m02;
            c2y = m.m12;
            c2z = m.m22;
            c3x = m.m03;
            c3y = m.m13;
            c3z = m.m23;
        }
    }
    private void Start()
    {
        m_BRG = new BatchRendererGroup(this.OnPerformCulling, IntPtr.Zero);
        m_MeshID = m_BRG.RegisterMesh(mesh);
        m_MaterialID = m_BRG.RegisterMaterial(material);
        AllocateInstanceDateBuffer();
        PopulateInstanceDataBuffer();
    }
    private void AllocateInstanceDateBuffer()
    {
        m_InstanceData = new GraphicsBuffer(GraphicsBuffer.Target.Raw,
            BufferCountForInstances(kBytesPerInstance, kNumInstances, kExtraBytes),
            sizeof(int));
    }
    private void PopulateInstanceDataBuffer()
    {
        // Place a zero matrix at the start of the instance data buffer, so loads from address 0 return zero.
        var zero = new Matrix4x4[1] { Matrix4x4.zero };
        // Create transform matrices for three example instances.
        var matrices = new Matrix4x4[kNumInstances]
        {
            Matrix4x4.Translate(new Vector3(-2, 0, 0)),
            Matrix4x4.Translate(new Vector3(0, 0, 0)),
            Matrix4x4.Translate(new Vector3(2, 0, 0)),
        };
        // Convert the transform matrices into the packed format that shaders expects.
        var objectToWorld = new PackedMatrix[kNumInstances]
        {
            new PackedMatrix(matrices[0]),
            new PackedMatrix(matrices[1]),
            new PackedMatrix(matrices[2]),
        };
        // Also create packed inverse matrices.
        var worldToObject = new PackedMatrix[kNumInstances]
        {
            new PackedMatrix(matrices[0].inverse),
            new PackedMatrix(matrices[1].inverse),
            new PackedMatrix(matrices[2].inverse),
        };
        // Make all instances have unique colors.
        var colors = new Vector4[kNumInstances]
        {
            new Vector4(1, 0, 0, 1),
            new Vector4(0, 1, 0, 1),
            new Vector4(0, 0, 1, 1),
        };
        // In this simple example, the instance data is placed into the buffer like this:
        // Offset | Description
        //      0 | 64 bytes of zeroes, so loads from address 0 return zeroes
        //     64 | 32 uninitialized bytes to make working with SetData easier, otherwise unnecessary
        //     96 | unity_ObjectToWorld, three packed float3x4 matrices
        //    240 | unity_WorldToObject, three packed float3x4 matrices
        //    384 | _BaseColor, three float4s
        // Calculates start addresses for the different instanced properties. unity_ObjectToWorld starts at 
        // address 96 instead of 64 which means 32 bits are left uninitialized.This is because the 
        // computeBufferStartIndex parameter requires the start offset to be divisible by the size of the source
        // array element type.In this case, it's the size of PackedMatrix, which is 48.
        uint byteAddressObjectToWorld = kSizeOfPackedMatrix * 2;
        uint byteAddressWorldToObject = byteAddressObjectToWorld + kSizeOfPackedMatrix * kNumInstances;
        uint byteAddressColor = byteAddressWorldToObject + kSizeOfPackedMatrix * kNumInstances;
        // Upload the instance data to the GraphicsBuffer so the shader can load them.
        m_InstanceData.SetData(zero, 0, 0, 1);
        m_InstanceData.SetData(objectToWorld, 0, (int)(byteAddressObjectToWorld / kSizeOfPackedMatrix), objectToWorld.Length);
        m_InstanceData.SetData(worldToObject, 0, (int)(byteAddressWorldToObject / kSizeOfPackedMatrix), worldToObject.Length);
        m_InstanceData.SetData(colors, 0, (int)(byteAddressColor / kSizeOfFloat4), colors.Length);
        // Set up metadata values to point to the instance data.Set the most significant bit 0x80000000 in each
        // which instructs the shader that the data is an array with one value per instance, indexed by the instance index.
        // Any metadata values that the shader uses and not set here will be zero.When such a value is used with
        // UNITY_ACCESS_DOTS_INSTANCED_PROP (i.e. without a default), the shader interprets the
        // 0x00000000 metadata value and loads from the start of the buffer.The start of the buffer which is
        // is a zero matrix so this sort of load is guaranteed to return zero, which is a reasonable default value.
        var metadata = new NativeArray<MetadataValue>(3, Allocator.Temp);
        metadata[0] = new MetadataValue { NameID = Shader.PropertyToID("unity_ObjectToWorld"), Value = 0x80000000 | byteAddressObjectToWorld, };
        metadata[1] = new MetadataValue { NameID = Shader.PropertyToID("unity_WorldToObject"), Value = 0x80000000 | byteAddressWorldToObject, };
        metadata[2] = new MetadataValue { NameID = Shader.PropertyToID("_BaseColor"), Value = 0x80000000 | byteAddressColor, };
        // Finally, create a batch for the instances, and make the batch use the GraphicsBuffer with the
        // instance data, as well as the metadata values that specify where the properties are.
        m_BatchID = m_BRG.AddBatch(metadata, m_InstanceData.bufferHandle);
    }
    // Raw buffers are allocated in ints.This is a utility method that calculates
    // the required number of ints for the data.
    int BufferCountForInstances(int bytesPerInstance, int numInstances, int extraBytes = 0)
    {
        // Round byte counts to int multiples
        bytesPerInstance = (bytesPerInstance + sizeof(int) - 1) / sizeof(int) * sizeof(int);
        extraBytes = (extraBytes + sizeof(int) - 1) / sizeof(int) * sizeof(int);
        int totalBytes = bytesPerInstance * numInstances + extraBytes;
        return totalBytes / sizeof(int);
    }
    private void OnDisable()
    {
        m_BRG.Dispose();
    }
    public unsafe JobHandle OnPerformCulling(
        BatchRendererGroup rendererGroup,
        BatchCullingContext cullingContext,
        BatchCullingOutput cullingOutput,
        IntPtr userContext)
    {
        // UnsafeUtility.Malloc() requires an alignment, so use the largest integer type's alignment
        // which is a reasonable default.
        int alignment = UnsafeUtility.AlignOf<long>();
        // Acquire a pointer to the BatchCullingOutputDrawCommands struct so you can easily
        // modify it directly.
        var drawCommands = (BatchCullingOutputDrawCommands*)cullingOutput.drawCommands.GetUnsafePtr();
        // Allocate memory for the output arrays.In a more complicated implementation, you would calculate
        // the amount of memory to allocate dynamically based on what is visible.
        // This example assumes that all of the instances are visible and thus allocates
        // memory for each of them.The necessary allocations are as follows:
        // - a single draw command (which draws kNumInstances instances)
        // - a single draw range (which covers our single draw command)
        // - kNumInstances visible instance indices.
        // You must always allocate the arrays using Allocator.TempJob.
        drawCommands->drawCommands = (BatchDrawCommand*)UnsafeUtility.Malloc(UnsafeUtility.SizeOf<BatchDrawCommand>(), alignment, Allocator.TempJob);
        drawCommands->drawRanges = (BatchDrawRange*)UnsafeUtility.Malloc(UnsafeUtility.SizeOf<BatchDrawRange>(), alignment, Allocator.TempJob);
        drawCommands->visibleInstances = (int*)UnsafeUtility.Malloc(kNumInstances * sizeof(int), alignment, Allocator.TempJob);
        drawCommands->drawCommandPickingInstanceIDs = null;
        drawCommands->drawCommandCount = 1;
        drawCommands->drawRangeCount = 1;
        drawCommands->visibleInstanceCount = kNumInstances;
        // This example doens't use depth sorting, so it leaves instanceSortingPositions as null.
        drawCommands->instanceSortingPositions = null;
        drawCommands->instanceSortingPositionFloatCount = 0;
        // Configure the single draw command to draw kNumInstances instances
        // starting from offset 0 in the array, using the batch, material and mesh
        // IDs registered in the Start() method.It doesn't set any special flags.
        drawCommands->drawCommands[0].visibleOffset = 0;
        drawCommands->drawCommands[0].visibleCount = kNumInstances;
        drawCommands->drawCommands[0].batchID = m_BatchID;
        drawCommands->drawCommands[0].materialID = m_MaterialID;
        drawCommands->drawCommands[0].meshID = m_MeshID;
        drawCommands->drawCommands[0].submeshIndex = 0;
        drawCommands->drawCommands[0].splitVisibilityMask = 0xff;
        drawCommands->drawCommands[0].flags = 0;
        drawCommands->drawCommands[0].sortingPosition = 0;
        // Configure the single draw range to cover the single draw command which
        // is at offset 0.
        drawCommands->drawRanges[0].drawCommandsBegin = 0;
        drawCommands->drawRanges[0].drawCommandsCount = 1;
        // This example doesn't care about shadows or motion vectors, so it leaves everything
        // at the default zero values, except the renderingLayerMask which it sets to all ones
        // so Unity renders the instances regardless of mask settings.
        drawCommands->drawRanges[0].filterSettings = new BatchFilterSettings { renderingLayerMask = 0xffffffff, };
        // Finally, write the actual visible instance indices to the array.In a more complicated
        // implementation, this output would depend on what is visible, but this example
        // assumes that everything is visible.
        for (int i = 0; i < kNumInstances; ++i)
            drawCommands->visibleInstances[i] = i;
        // This simple example doesn't use jobs, so it returns an empty JobHandle.
        // Performance-sensitive applications are encouraged to use Burst jobs to implement
        // culling and draw command output.In this case, this function returns a
        // handle here that completes when the Burst jobs finish.
        return new JobHandle();
    }
}
이는 BRG의 완성된 최종 코드 샘플입니다.이 컴포넌트를 게임 오브젝트에 연결하고 인스펙터에서 메시와 DOTS 인스턴싱 호환 머티리얼을 설정하고 플레이 모드로 들어가면, Unity가 머티리얼을 사용하여 메시의 인스턴스 3개를 렌더링합니다.