Version: 2019.4


class in UnityEngine






Meshes contain vertex data (Positions, Normals, TexCoords etc.) and "face" data, with faces most often being triangles.

Conceptually, all vertex data is stored in separate arrays of the same size. For example, if you have a mesh of 100 Vertices, and want to have a position, normal and two texture coordinates for each vertex, then the mesh should have vertices, normals, uv and uv2 arrays, each being 100 in size. Data for i-th vertex is at index "i" in each array.

For every vertex there can be a vertex position, normal, tangent, color and up to 8 texture coordinates. Texture coordinates most often are 2D data (Vector2), but it is possible to make them Vector3 or Vector4 if needed. This is most often used for holding arbitrary data in mesh vertices, for special effects used in shaders. For skinned meshes, the vertex data can also contain boneWeights.

The mesh face data, i.e. the triangles it is made of, is simply three vertex indices for each triangle. For example, if the mesh has 10 triangles, then the triangles array should be 30 numbers, with each number indicating which vertex to use. The first three elements in the triangles array are the indices for the vertices that make up that triange; the second three elements make up another triangle and so on.

Note that while triangle meshes are the most common use case, Unity also supports other mesh topology types, for example Line or Point meshes. For line meshes, each line is composed of two vertex indices and so on. See SetIndices and MeshTopology.

Simple vs Advanced Mesh API

The Mesh class has two sets of methods for assigning data to a Mesh from script. The "simple" set of methods provide a basis for setting the indices, triangle, normals, tangents, etc. These methods include validation checks, for example to ensure that you are not passing in data that would include out-of-bounds indices. They represent the standard way to assign Mesh data from script in Unity.

The "simple" methods are: SetColors, SetIndices, SetNormals, SetTangents, SetTriangles, SetUVs, SetVertices, SetBoneWeights

There is also an "advanced" set of methods, which allow you to directly write to the mesh data with control over whether any checks or validation should be performed. These methods are intended for advanced use cases which require maximum performance. They are faster, but allow you to skip the checks on the data you supply. If you use these methods you must make sure that you are not supplying invalid data, because Unity will not check for you.

The "advanced" methods are: SetVertexBufferParams, SetVertexBufferData, SetIndexBufferParams, SetIndexBufferData, SetSubMesh, and you can use the MeshUpdateFlags to control which checks or validation are performed or omitted.

Manipulating meshes from a script

There are three common tasks that might want to use the Mesh API for:

1. Building a mesh from scratch: should always be done in the following order:
a) Assign vertices
b) Assign triangles.

using UnityEngine;

public class Example : MonoBehaviour { Vector3[] newVertices; Vector2[] newUV; int[] newTriangles;

void Start() { Mesh mesh = new Mesh(); GetComponent<MeshFilter>().mesh = mesh; mesh.vertices = newVertices; mesh.uv = newUV; mesh.triangles = newTriangles; } }

2. Modifying vertex attributes every frame:
a) Get vertices
b) Modify them
c) Assign them back to the mesh.

using UnityEngine;

public class Example : MonoBehaviour { void Update() { Mesh mesh = GetComponent<MeshFilter>().mesh; Vector3[] vertices = mesh.vertices; Vector3[] normals = mesh.normals;

for (var i = 0; i < vertices.Length; i++) { vertices[i] += normals[i] * Mathf.Sin(Time.time); }

mesh.vertices = vertices; } }

3. Continously changing the mesh triangles and vertices:
a) Call Clear to start fresh
b) Assign vertices and other attributes
c) Assign triangle indices.

It is important to call Clear before assigning new vertices or triangles. Unity always checks the supplied triangle indices whether they don't reference out of bounds vertices. Calling Clear then assigning vertices then triangles makes sure you never have out of bounds data.

using UnityEngine;

public class ExampleClass : MonoBehaviour { Vector3[] newVertices; Vector2[] newUV; int[] newTriangles;

void Start() { Mesh mesh = GetComponent<MeshFilter>().mesh;


// Do some calculations... mesh.vertices = newVertices; mesh.uv = newUV; mesh.triangles = newTriangles; } }


blendShapeCountメッシュの BlendShape 数を返します
boneWeightsThe bone weights for each vertex in the Mesh, up to a maximum of 4.
boundsThe bounding volume of the Mesh.
indexFormatFormat of the mesh index buffer data.
isReadableReturns true if the Mesh is read/write enabled, or false if it is not.
subMeshCountThe number of sub-meshes inside the Mesh object.
uvMash のベースとなるテクスチャの座標
uv22 つめのテクスチャの座標
uv3存在する場合、メッシュの 3 番目のテクスチャ座標設定
uv4存在する場合、メッシュの 4 番目のテクスチャ座標設定
uv5The fifth texture coordinate set of the mesh, if present.
uv6The sixth texture coordinate set of the mesh, if present.
uv7The seventh texture coordinate set of the mesh, if present.
uv8The eighth texture coordinate set of the mesh, if present.
vertexAttributeCountReturns the number of vertex attributes that the mesh has. (Read Only)
vertexBufferCountGets the number of vertex buffers present in the Mesh. (Read Only)
vertexCountメッシュの頂点の数 (読み取り専用) を返します。



Public 関数

GetAllBoneWeightsGets the bone weights for the Mesh.
GetBaseVertexGets the base vertex index of the given sub-mesh.
GetBindposesGets the bind poses of the Mesh.
GetBlendShapeFrameVerticesブレンドシェイプフレームの deltaTangents、deltaTangents、deltaTangents を取得します
GetBlendShapeIndex指定インデックスの BlendShape のインデックスを返します。
GetBlendShapeName指定インデックスの BlendShape 名を返します
GetBonesPerVertexThe number of non-zero bone weights for each vertex.
GetBoneWeightsGets the bone weights for the Mesh.
GetColorsGets the vertex colors of the Mesh.
GetIndexCountGets the index count of the given sub-mesh.
GetIndexStartGets the starting index location within the Mesh's index buffer, for the given sub-mesh.
GetIndicesFetches the index list for the specified sub-mesh.
GetNativeIndexBufferPtrインデックスバッファへのネイティブ (規定のグラフィックス API) ポインターを探します。
GetNativeVertexBufferPtr頂点バッファを指すネイティブ (基底にあるグラフィックス API) ポインターを捜します。
GetNormalsGets the vertex normals of the Mesh.
GetSubMeshGet information about a sub-mesh of the Mesh.
GetTangentsGets the tangents of the Mesh.
GetTopologyGets the topology of a sub-mesh.
GetTrianglesFetches the triangle list for the specified sub-mesh on this object.
GetUVDistributionMetricThe UV distribution metric can be used to calculate the desired mipmap level based on the position of the camera.
GetUVsGets the UVs of the Mesh.
GetVertexAttributeReturns information about a vertex attribute based on its index.
GetVertexAttributeDimensionGet dimension of a specific vertex data attribute on this Mesh.
GetVertexAttributeFormatGet format of a specific vertex data attribute on this Mesh.
GetVertexAttributesGet information about vertex attributes of a Mesh.
GetVerticesGets the vertex positions of the Mesh.
HasVertexAttributeChecks if a specific vertex data attribute exists on this Mesh.
MarkModifiedNotify Renderer components of mesh geometry change.
OptimizeOptimizes the Mesh data to improve rendering performance.
OptimizeIndexBuffersOptimizes the geometry of the Mesh to improve rendering performance.
OptimizeReorderVertexBufferOptimizes the vertices of the Mesh to improve rendering performance.
RecalculateTangentsRecalculates the tangents of the Mesh from the normals and texture coordinates.
SetBoneWeightsSets the bone weights for the Mesh.
SetColorsSet the per-vertex colors of the Mesh.
SetIndexBufferDataSets the data of the index buffer of the Mesh.
SetIndexBufferParamsSets the index buffer size and format.
SetIndicesSets the index buffer for the sub-mesh.
SetSubMeshSets the information about a sub-mesh of the Mesh.
SetTrianglesSets the triangle list for the sub-mesh.
SetUVsSets the UVs of the Mesh.
SetVertexBufferDataSets the data of the vertex buffer of the Mesh.
SetVertexBufferParamsSets the vertex buffer size and layout.
UploadMeshData以前行ったメッシュの変更をグラフィック API へアップロードします。



hideFlagsShould the object be hidden, saved with the Scene or modifiable by the user?

Public 関数

GetInstanceIDオブジェクトのインスタンス ID を返します
ToStringReturns the name of the object.

Static 関数

DestroyRemoves a GameObject, component or asset.
DestroyImmediateDestroys the object obj immediately. You are strongly recommended to use Destroy instead.
DontDestroyOnLoadDo not destroy the target Object when loading a new Scene.
FindObjectOfTypeタイプ type から最初に見つけたアクティブのオブジェクトを返します
Instantiateoriginal のオブジェクトをクローンします


operator !=二つのオブジェクトが異なるオブジェクトを参照しているか比較します
operator ==2つのオブジェクト参照が同じオブジェクトを参照しているか比較します。