Class TensorFloat
Represents data in a multidimensional array-like structure of floats.
Syntax
public class TensorFloat : Tensor, IDisposable
Constructors
TensorFloat(Single)
Initializes and returns a scalar tensor with the value of srcData
.
Declaration
public TensorFloat(float srcData)
Parameters
Type |
Name |
Description |
Single |
srcData |
|
TensorFloat(TensorShape, Single[])
Initializes and returns a tensor with the specified shape
and a float[] array of srcData
data.
Declaration
public TensorFloat(TensorShape shape, float[] srcData)
Parameters
TensorFloat(TensorShape, Single[], Int32)
Initializes and returns a tensor with specified shape
and a float[] array of srcData
data. Sentis reads srcData
from dataStartIndex
.
srcData.Length
- dataStartIndex
must be bigger than or equal to shape.length
.
Declaration
public TensorFloat(TensorShape shape, float[] srcData, int dataStartIndex = 0)
Parameters
TensorFloat(TensorShape, NativeArray<Single>, Int32)
Declaration
public TensorFloat(TensorShape shape, NativeArray<float> srcData, int dataStartIndex = 0)
Parameters
Properties
dataType
The data type of the elements of the tensor.
Declaration
public override DataType dataType { get; }
Property Value
Overrides
Item[Int32]
Returns the tensor element at offset d0
.
Declaration
public float this[int d0] { get; set; }
Parameters
Type |
Name |
Description |
Int32 |
d0 |
|
Property Value
Item[Int32, Int32]
Returns the tensor element at offset (d1, d0)
, which is position d1 * stride0 + d0
.
Declaration
public float this[int d1, int d0] { get; set; }
Parameters
Property Value
Item[Int32, Int32, Int32]
Returns the tensor element at offset (d2, d1, d0)
, which is position d2 * stride1 + d1 * stride0 + d0
.
Declaration
public float this[int d2, int d1, int d0] { get; set; }
Parameters
Property Value
Item[Int32, Int32, Int32, Int32]
Returns the tensor element at offset (d3, d2, d1, d0)
, which is position d3 * stride2 + d2 * stride1 + d1 * stride0 + d0
in this tensor.
Declaration
public float this[int d3, int d2, int d1, int d0] { get; set; }
Parameters
Property Value
Item[Int32, Int32, Int32, Int32, Int32]
Returns the tensor element at offset (d4, d3, d2, d1, d0)
, which is position d4 * stride3 + d3 * stride2 + d2 * stride1 + d1 * stride0 + d0
.
Declaration
public float this[int d4, int d3, int d2, int d1, int d0] { get; set; }
Parameters
Property Value
Item[Int32, Int32, Int32, Int32, Int32, Int32]
Returns the tensor element at offset (d5, d4, d3, d2, d1, d0)
, which is position d5 * stride4 + d4 * stride3 + d3 * stride2 + d2 * stride1 + d1 * stride0 + d0
.
Declaration
public float this[int d5, int d4, int d3, int d2, int d1, int d0] { get; set; }
Parameters
Property Value
Item[Int32, Int32, Int32, Int32, Int32, Int32, Int32]
Returns the tensor element at offset (d6, d5, d4, d3, d2, d1, d0)
, which is position d6 * stride5 + d5 * stride4 + d4 * stride3 + d3 * stride2 + d2 * stride1 + d1 * stride0 + d0
.
Declaration
public float this[int d6, int d5, int d4, int d3, int d2, int d1, int d0] { get; set; }
Parameters
Property Value
Item[Int32, Int32, Int32, Int32, Int32, Int32, Int32, Int32]
Returns the tensor element at offset (d7, d6, d5, d4, d3, d2, d1, d0)
, which is position d7 * stride6 + d6 * stride5 + d5 * stride4 + d4 * stride3 + d3 * stride2 + d2 * stride1 + d1 * stride0 + d0
.
Declaration
public float this[int d7, int d6, int d5, int d4, int d3, int d2, int d1, int d0] { get; set; }
Parameters
Property Value
Methods
DeepCopy()
Returns a deep copy of the current Tensor.
Declaration
public override Tensor DeepCopy()
Returns
Overrides
ShallowReshape(TensorShape)
Returns a shallow copy of the Tensor
with a new shape. The copy shares data storage with the original tensor.
newShape.length
must be equal to this.shape.length
.
Declaration
public override Tensor ShallowReshape(TensorShape newShape)
Parameters
Returns
Overrides
ToReadOnlyArray()
Returns a copy of linear memory representation of the data in this tensor.
the returned array is a deepcopy of the tensor, the caller of this methods is now responsible for it.
If you modify the contents of the returned array, it will not modify the underlying tensor
Declaration
public float[] ToReadOnlyArray()
Returns
ToReadOnlySpan()
Returns a ReadOnlySpan on the linear memory representation of the data in this tensor.
Declaration
public ReadOnlySpan<float> ToReadOnlySpan()
Returns
Type |
Description |
ReadOnlySpan<Single> |
|
UploadToDevice(ITensorData)
Declaration
public override void UploadToDevice(ITensorData destination)
Parameters
Overrides
Zeros(TensorShape)
Initializes and returns a tensor with the specified shape
and filled with 0
.
Declaration
public static TensorFloat Zeros(TensorShape shape)
Parameters
Returns
Extension Methods
Did you find this page useful? Please give it a rating:
Thanks for rating this page!
What kind of problem would you like to report?
Thanks for letting us know! This page has been marked for review based on your feedback.
If you have time, you can provide more information to help us fix the problem faster.
Provide more information
You've told us this page needs code samples. If you'd like to help us further, you could provide a code sample, or tell us about what kind of code sample you'd like to see:
You've told us there are code samples on this page which don't work. If you know how to fix it, or have something better we could use instead, please let us know:
You've told us there is information missing from this page. Please tell us more about what's missing:
You've told us there is incorrect information on this page. If you know what we should change to make it correct, please tell us:
You've told us this page has unclear or confusing information. Please tell us more about what you found unclear or confusing, or let us know how we could make it clearer:
You've told us there is a spelling or grammar error on this page. Please tell us what's wrong:
You've told us this page has a problem. Please tell us more about what's wrong:
Thank you for helping to make the Unity documentation better!
Your feedback has been submitted as a ticket for our documentation team to review.
We are not able to reply to every ticket submitted.