In Unity, you usually write shaderA program that runs on the GPU. More info
See in Glossary programs in HLSL. To add HLSL code to your shader asset, you put the code inside a shader code block.
Note: Unity also supports writing shader programs in other languages, although this is not generally needed or recommended. For more information, see Writing shaders.
This section of the manual includes information on using HLSL in a Unity-specific way. For general information on writing HLSL, see Microsoft’s HLSL documentation.
Note: Unity originally used the Cg language, hence the name of some of Unity’s keywords (CGPROGRAM
) and file extensions (.cginc
). Unity no longer uses Cg, but these names are still in use.
HLSL has two syntaxes: a legacy DirectX 9-style syntax, and a more modern DirectX 10+ style syntax. The difference is mostly in how texture sampling functions work:
Unity provides shader libraries that contain preprocessor macros to help you manage these differences. For more information, see Built-in shader macros.
The Vertex ShaderA program that runs on each vertex of a 3D model when the model is being rendered. More info
See in Glossary is a program that runs on each vertex of the 3D model. Quite often it does not do anything particularly interesting. Here we just transform vertex position from object space into so called “clip space”, which is what’s used by the GPU to rasterize the object on screen. We also pass the input texture coordinate unmodified - we’ll need it to sample the texture in the fragment shader.
The Fragment Shader is a program that runs on each and every pixelThe smallest unit in a computer image. Pixel size depends on your screen resolution. Pixel lighting is calculated at every screen pixel. More info
See in Glossary that object occupies on-screen, and is usually used to calculate and output the color of each pixel. Usually there are millions of pixels on the screen, and the fragment shaders are executed
for all of them! Optimizing fragment shaders is quite an important part of overall game performance work.
Some variable or function definitions are followed by a Semantic Signifier - for example : POSITION or : SV_Target. These semantics signifiers communicate the “meaning” of these variables to the GPU. See the shader semantics page for details.
Did you find this page useful? Please give it a rating:
Thanks for rating this page!
What kind of problem would you like to report?
Thanks for letting us know! This page has been marked for review based on your feedback.
If you have time, you can provide more information to help us fix the problem faster.
Provide more information
You've told us this page needs code samples. If you'd like to help us further, you could provide a code sample, or tell us about what kind of code sample you'd like to see:
You've told us there are code samples on this page which don't work. If you know how to fix it, or have something better we could use instead, please let us know:
You've told us there is information missing from this page. Please tell us more about what's missing:
You've told us there is incorrect information on this page. If you know what we should change to make it correct, please tell us:
You've told us this page has unclear or confusing information. Please tell us more about what you found unclear or confusing, or let us know how we could make it clearer:
You've told us there is a spelling or grammar error on this page. Please tell us what's wrong:
You've told us this page has a problem. Please tell us more about what's wrong:
Thank you for helping to make the Unity documentation better!
Your feedback has been submitted as a ticket for our documentation team to review.
We are not able to reply to every ticket submitted.