Here are some examples of Surface Shaders. The examples below focus on using built-in lighting models; examples on how to implement custom lighting models are in Surface Shader Lighting Examples.
We'll start with a very simple shader and build up on that. Here's a shader that just sets surface color to "white". It uses built-in Lambert (diffuse) lighting model.
Shader "Example/Diffuse Simple" { SubShader { Tags { "RenderType" = "Opaque" } CGPROGRAM #pragma surface surf Lambert struct Input { float4 color : COLOR; }; void surf (Input IN, inout SurfaceOutput o) { o.Albedo = 1; } ENDCG } Fallback "Diffuse" }
Here's how it looks like on a model with two lights set up:
An all-white object is quite boring, so let's add a texture. We'll add a Properties block to the shader, so we get a texture selector in our Material. Other changes are in bold below.
Shader "Example/Diffuse Texture" { Properties { _MainTex ("Texture", 2D) = "white" {} } SubShader { Tags { "RenderType" = "Opaque" } CGPROGRAM #pragma surface surf Lambert struct Input { float2 uv_MainTex; }; sampler2D _MainTex; void surf (Input IN, inout SurfaceOutput o) { o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb; } ENDCG } Fallback "Diffuse" }
Let's add some normal mapping:
Shader "Example/Diffuse Bump" { Properties { _MainTex ("Texture", 2D) = "white" {} _BumpMap ("Bumpmap", 2D) = "bump" {} } SubShader { Tags { "RenderType" = "Opaque" } CGPROGRAM #pragma surface surf Lambert struct Input { float2 uv_MainTex; float2 uv_BumpMap; }; sampler2D _MainTex; sampler2D _BumpMap; void surf (Input IN, inout SurfaceOutput o) { o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb; o.Normal = UnpackNormal (tex2D (_BumpMap, IN.uv_BumpMap)); } ENDCG } Fallback "Diffuse" }
Now, try to add some Rim Lighting to highlight the edges of an object. We'll add some emissive light based on angle between surface normal and view direction. For that, we'll use viewDir
built-in surface shader variable.
Shader "Example/Rim" { Properties { _MainTex ("Texture", 2D) = "white" {} _BumpMap ("Bumpmap", 2D) = "bump" {} _RimColor ("Rim Color", Color) = (0.26,0.19,0.16,0.0) _RimPower ("Rim Power", Range(0.5,8.0)) = 3.0 } SubShader { Tags { "RenderType" = "Opaque" } CGPROGRAM #pragma surface surf Lambert struct Input { float2 uv_MainTex; float2 uv_BumpMap; float3 viewDir; }; sampler2D _MainTex; sampler2D _BumpMap; float4 _RimColor; float _RimPower; void surf (Input IN, inout SurfaceOutput o) { o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb; o.Normal = UnpackNormal (tex2D (_BumpMap, IN.uv_BumpMap)); half rim = 1.0 - saturate(dot (normalize(IN.viewDir), o.Normal)); o.Emission = _RimColor.rgb * pow (rim, _RimPower); } ENDCG } Fallback "Diffuse" }
For a different effect, let's add a detail texture that is combined with the base texture. Detail texture uses the same UVs, but usually different Tiling in the Material, so we have to use different input UV coordinates.
Shader "Example/Detail" { Properties { _MainTex ("Texture", 2D) = "white" {} _BumpMap ("Bumpmap", 2D) = "bump" {} _Detail ("Detail", 2D) = "gray" {} } SubShader { Tags { "RenderType" = "Opaque" } CGPROGRAM #pragma surface surf Lambert struct Input { float2 uv_MainTex; float2 uv_BumpMap; float2 uv_Detail; }; sampler2D _MainTex; sampler2D _BumpMap; sampler2D _Detail; void surf (Input IN, inout SurfaceOutput o) { o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb; o.Albedo *= tex2D (_Detail, IN.uv_Detail).rgb * 2; o.Normal = UnpackNormal (tex2D (_BumpMap, IN.uv_BumpMap)); } ENDCG } Fallback "Diffuse" }
Using a checker texture does not make much practical sense, but illustrates what happens:
How about a detail texture in screen space? It does not make much sense for a soldier head model, but illustrates how a built-in screenPos
input might be used:
Shader "Example/ScreenPos" { Properties { _MainTex ("Texture", 2D) = "white" {} _Detail ("Detail", 2D) = "gray" {} } SubShader { Tags { "RenderType" = "Opaque" } CGPROGRAM #pragma surface surf Lambert struct Input { float2 uv_MainTex; float4 screenPos; }; sampler2D _MainTex; sampler2D _Detail; void surf (Input IN, inout SurfaceOutput o) { o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb; float2 screenUV = IN.screenPos.xy / IN.screenPos.w; screenUV *= float2(8,6); o.Albedo *= tex2D (_Detail, screenUV).rgb * 2; } ENDCG } Fallback "Diffuse" }
I removed normal mapping from the shader above, just to make it shorter:
Here's a shader that does cubemapped reflection using built-in worldRefl
input. It's actually very similar to built-in Reflective/Diffuse shader:
Shader "Example/WorldRefl" { Properties { _MainTex ("Texture", 2D) = "white" {} _Cube ("Cubemap", CUBE) = "" {} } SubShader { Tags { "RenderType" = "Opaque" } CGPROGRAM #pragma surface surf Lambert struct Input { float2 uv_MainTex; float3 worldRefl; }; sampler2D _MainTex; samplerCUBE _Cube; void surf (Input IN, inout SurfaceOutput o) { o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb * 0.5; o.Emission = texCUBE (_Cube, IN.worldRefl).rgb; } ENDCG } Fallback "Diffuse" }
And since it assigns the reflection color as Emission, we get a very shiny soldier:
If you want to do reflections that are affected by normal maps, it needs to be slightly more involved: INTERNAL_DATA
needs to be added to the Input structure, and WorldReflectionVector
function used to compute per-pixel reflection vector after you've written the Normal output.
Shader "Example/WorldRefl Normalmap" { Properties { _MainTex ("Texture", 2D) = "white" {} _BumpMap ("Bumpmap", 2D) = "bump" {} _Cube ("Cubemap", CUBE) = "" {} } SubShader { Tags { "RenderType" = "Opaque" } CGPROGRAM #pragma surface surf Lambert struct Input { float2 uv_MainTex; float2 uv_BumpMap; float3 worldRefl; INTERNAL_DATA }; sampler2D _MainTex; sampler2D _BumpMap; samplerCUBE _Cube; void surf (Input IN, inout SurfaceOutput o) { o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb * 0.5; o.Normal = UnpackNormal (tex2D (_BumpMap, IN.uv_BumpMap)); o.Emission = texCUBE (_Cube, WorldReflectionVector (IN, o.Normal)).rgb; } ENDCG } Fallback "Diffuse" }
Here's a normal mapped shiny soldier:
Here's a shader that "slices" the object by discarding pixels in nearly horizontal rings. It does that by using clip()
Cg/HLSL function based on world position of a pixel. We'll use worldPos
built-in surface shader variable.
Shader "Example/Slices" { Properties { _MainTex ("Texture", 2D) = "white" {} _BumpMap ("Bumpmap", 2D) = "bump" {} } SubShader { Tags { "RenderType" = "Opaque" } Cull Off CGPROGRAM #pragma surface surf Lambert struct Input { float2 uv_MainTex; float2 uv_BumpMap; float3 worldPos; }; sampler2D _MainTex; sampler2D _BumpMap; void surf (Input IN, inout SurfaceOutput o) { clip (frac((IN.worldPos.y+IN.worldPos.z*0.1) * 5) - 0.5); o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb; o.Normal = UnpackNormal (tex2D (_BumpMap, IN.uv_BumpMap)); } ENDCG } Fallback "Diffuse" }
It is possible to use a "vertex modifier" function that will modify incoming vertex data in the vertex shader. This can be used for procedural animation, extrusion along normals and so on. Surface shader compilation directive vertex:functionName
is used for that, with a function that takes inout appdata_full
parameter.
Here's a shader that moves vertices along their normals by the amount specified in the material:
Shader "Example/Normal Extrusion" { Properties { _MainTex ("Texture", 2D) = "white" {} _Amount ("Extrusion Amount", Range(-1,1)) = 0.5 } SubShader { Tags { "RenderType" = "Opaque" } CGPROGRAM #pragma surface surf Lambert vertex:vert struct Input { float2 uv_MainTex; }; float _Amount; void vert (inout appdata_full v) { v.vertex.xyz += v.normal * _Amount; } sampler2D _MainTex; void surf (Input IN, inout SurfaceOutput o) { o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb; } ENDCG } Fallback "Diffuse" }
Moving vertices along their normals makes a fat soldier:
Using a vertex modifier function it is also possible to compute custom data in a vertex shader, which then will be passed to the surface shader function per-pixel. The same compilation directive vertex:functionName
is used, but the function should take two parameters: inout appdata_full
and out Input
. You can fill in any Input member that is not a built-in value there.
Example below defines a custom float3 customColor
member, which is computed in a vertex function:
In this example customColor
is set to the absolute value of the normal:
More practical uses could be computing any per-vertex data that is not provided by built-in Input variables; or optimizing shader computations. For example, it's possible to compute Rim lighting at object's vertices, instead of doing that in the surface shader per-pixel.
It is possible to use a "final color modifier" function that will modify final color computed by the shader. Surface shader compilation directive finalcolor:functionName
is used for that, with a function that takes Input IN, SurfaceOutput o, inout fixed4 color
parameters.
Here's a simple shader that applies tint to final color. This is different from just applying tint to surface Albedo color: this tint will also affect any color that came from lightmaps, light probes and similar extra sources.
Shader "Example/Tint Final Color" { Properties { _MainTex ("Texture", 2D) = "white" {} _ColorTint ("Tint", Color) = (1.0, 0.6, 0.6, 1.0) } SubShader { Tags { "RenderType" = "Opaque" } CGPROGRAM #pragma surface surf Lambert finalcolor:mycolor struct Input { float2 uv_MainTex; }; fixed4 _ColorTint; void mycolor (Input IN, SurfaceOutput o, inout fixed4 color) { color *= _ColorTint; } sampler2D _MainTex; void surf (Input IN, inout SurfaceOutput o) { o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb; } ENDCG } Fallback "Diffuse" }
Common use case for final color modifier (see above) would be implementing completely custom Fog. Fog needs to affect the final computed pixel shader color, which is exactly what the finalcolor
modifier does.
Here's a shader that applies fog tint based on distance from screen center. This combines both the vertex modifier with custom vertex data (fog
) and final color modifier. When used in forward rendering additive pass, Fog needs to fade to black color, and this example handles that as well with a check for UNITY_PASS_FORWARDADD
.
Page last updated: 2012-09-05