Asynchronous Texture Upload enables asynchronous loading of Texture Data from disk and enables time-sliced upload to GPU on the Render-thread. This reduces wait for GPU uploads in the main thread. Async Texture Upload will automatically be used for all Textures that are not read-write enabled, so to use this feature no direct action is required. You can however control some aspects of how the async upload operates, and so some understanding of the process is useful to be able to use these controls.
When the project is built, the texture data of asynchronous uploadable textures are stored in as streaming resource files and are loaded asynchronously.
A single ring-buffer is reused to load the texture data and upload it to the GPU, which reduces the amount of memory allocations required. For example, if you have 20 small textures, Unity will set up an asynchronous load request for those 20 textures in one go. If you have one huge texture, Unity will request only one.
If the buffer size is not large enough for the textures being requested, it will automatically resize to accomodate, however it is always optimal to try to set the size to fit the largest sized texture that you will be uploading from the outset, so that the buffer does not need to resize for each new larger texture it encounters.
The time spent on texture upload each frame can be controlled, with larger values meaning the textures will become ready on the GPU sooner but with the overhead of more CPU time being used during those frames for other processing. This CPU time is only used if there are textures waiting in the buffer to be uploaded to the GPU.
The size of the buffer and time-slice can be specified through the Quality settings:
We provide the ability to control the Buffer Size and the Time-Slice value from script.
See Script Ref: QualitySettings.asyncUploadTimeSlice.
Sets the Time-Slice in milliseconds for CPU time spent on Asynchronous Texture Uploads per frame. Depending on the target platform and API, you may want to set this. Time is only spent on the function call if there are textures to upload, otherwise it early-exits.
See Script Ref: QualitySettings.asyncUploadBufferSize
Set the Ring Buffer Size for Asynchronous Texture Uploads. The size is in mega-bytes. Ensure that you set a reasonable size depending on the Target platform. Also please ensure that it is always sufficient to load any huge texture in your games. For example if you have a CubemapA collection of six square textures that can represent the reflections in an environment or the skybox drawn behind your geometry. The six squares form the faces of an imaginary cube that surrounds an object; each face represents the view along the directions of the world axes (up, down, left, right, forward and back). More info
See in Glossary of size 22MB and if you set the size of the RingBuffer to 16MB, the App will automatically resize the Ringbuffer to 22MB while loading that sceneA Scene contains the environments and menus of your game. Think of each unique Scene file as a unique level. In each Scene, you place your environments, obstacles, and decorations, essentially designing and building your game in pieces. More info
See in Glossary.
For non-read/write enabled textures, the TextureData is part of resS (Streaming Resource) and upload now happens on Render-Thread. Availability of Texture is guaranteed during call to AwakeFromLoad just as before, so there are no changes in terms of order of loading or availability of Textures on RenderingThe process of drawing graphics to the screen (or to a render texture). By default, the main camera in Unity renders its view to the screen. More info
See in Glossary.
For other types of texture loading, such as read/write enabled textures, textures loaded directly with the LoadImage(byte[] data) function, or loading from the Resources folder, the Asynchronous buffer loading is not used - the older Synchronous method is used.
Did you find this page useful? Please give it a rating:
Thanks for rating this page!
What kind of problem would you like to report?
Is something described here not working as you expect it to? It might be a Known Issue. Please check with the Issue Tracker at issuetracker.unity3d.com.
Thanks for letting us know! This page has been marked for review based on your feedback.
If you have time, you can provide more information to help us fix the problem faster.
Provide more information
You've told us this page needs code samples. If you'd like to help us further, you could provide a code sample, or tell us about what kind of code sample you'd like to see:
You've told us there are code samples on this page which don't work. If you know how to fix it, or have something better we could use instead, please let us know:
You've told us there is information missing from this page. Please tell us more about what's missing:
You've told us there is incorrect information on this page. If you know what we should change to make it correct, please tell us:
You've told us this page has unclear or confusing information. Please tell us more about what you found unclear or confusing, or let us know how we could make it clearer:
You've told us there is a spelling or grammar error on this page. Please tell us what's wrong:
You've told us this page has a problem. Please tell us more about what's wrong:
Thanks for helping to make the Unity documentation better!
When you visit any website, it may store or retrieve information on your browser, mostly in the form of cookies. This information might be about you, your preferences or your device and is mostly used to make the site work as you expect it to. The information does not usually directly identify you, but it can give you a more personalized web experience. Because we respect your right to privacy, you can choose not to allow some types of cookies. Click on the different category headings to find out more and change our default settings. However, blocking some types of cookies may impact your experience of the site and the services we are able to offer.
More information
These cookies enable the website to provide enhanced functionality and personalisation. They may be set by us or by third party providers whose services we have added to our pages. If you do not allow these cookies then some or all of these services may not function properly.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
These cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising. Some 3rd party video providers do not allow video views without targeting cookies. If you are experiencing difficulty viewing a video, you will need to set your cookie preferences for targeting to yes if you wish to view videos from these providers. Unity does not control this.
These cookies are necessary for the website to function and cannot be switched off in our systems. They are usually only set in response to actions made by you which amount to a request for services, such as setting your privacy preferences, logging in or filling in forms. You can set your browser to block or alert you about these cookies, but some parts of the site will not then work. These cookies do not store any personally identifiable information.