(For new projects, you should use the new networking system introduced in 5.1. This information is for legacy projects using the old networking system.)
Since network communication is potentially slow compared to other aspects of a game, it is important to reduce it to a minimum. It is therefore very important to consider how much data you are exchanging and how frequently the exchanges take place.
The amount of network bandwidth used depends heavily on whether you use the Unreliable or the Reliable Delta Compression mode to synchronize data (the mode is set from the Network View component).
In Unreliable mode, the whole of the object being synchronized will be transmitted on each iteration of the network update loop. The frequency of this update is determined by the value of Network.sendRate, which is set to 15 updates per second by default. Unreliable mode ensures frequent updates but any dropped or delayed packets will simply be ignored. This is often the best synchronization mode to use when objects change state very frequently and the effect of a missed update is very short-lived. However, you should bear in mind the amount of data that might be sent during each update. For example, synchronizing a Transform involves transmitting nine float values (three Vector3s with three floats each), which equates to 36 Bytes per update. If the server is running with eight clients and using the default update frequency then it will receive 4,320 KBytes/s (8*36*15) or 34.6Kbits/s and transmit 30.2 KBytes/s (8*7*36*15) or 242Kbits/s. You can reduce the bandwidth consumption considerably by lowering the frequency of updates, but the default value of 15 is about right for a game where the action moves quickly.
In Reliable Delta Compressed mode, the data is guaranteed to be sent reliably and arrive in the right order. If packets are lost then they get retransmitted and if they arrive out of order, they will be buffered until all packets in the sequence have arrived. Although this ensures that transmitted data is received correctly, the waiting and retransmission tend to increase bandwidth usage. However, the data is also delta compressed which means only the differences between the last state and the current state are transmitted. If the state is exactly the same then nothing is sent. The benefit of delta compression thus depends on how much the state changes and in which properties.
There is plenty of opportunity for creativity in designing the game so that the state appears to be the same on all clients even though it may not be, strictly. An example of this is where animations are synchronized. If an Animation component is observed by a Network View then its properties will be synchronized exactly, so the frames of animation will appear exactly the same on all clients. Although this may be desirable in some cases, typically it will be enough for the character to be seen as walking, running, jumping, etc. The animations can thus be crudely synchronized simply by sending an integer value to denote which animation sequence to play. This will save a great deal of bandwidth compared to synchronizing the whole Animation component.
It is often unnecessary to keep the game perfectly in sync on all clients, for example, in cases where the players are temporarily in different areas of the game world where they won’t encounter each other. This can reduce the bandwidth as well as the load on the server since only the clients that can interact need to be kept in sync. This concept is sometimes referred to as Relevant Sets (ie, there is a subset of the total game that is relevant to any particular client at any particular time). Synchronizing clients according to their relevant sets can be handled with RPCs, since they can give greater control over the destination of a state update.
When loading levels, it is seldom necessary to worry about the bandwidth being used since each client can simply wait until all the others have initialized the level to be played. Level loading can often involve transmitting even quite large data items (such as images or audio data).
Did you find this page useful? Please give it a rating:
Thanks for rating this page!
What kind of problem would you like to report?
Is something described here not working as you expect it to? It might be a Known Issue. Please check with the Issue Tracker at issuetracker.unity3d.com.
Thanks for letting us know! This page has been marked for review based on your feedback.
If you have time, you can provide more information to help us fix the problem faster.
Provide more information
You've told us this page needs code samples. If you'd like to help us further, you could provide a code sample, or tell us about what kind of code sample you'd like to see:
You've told us there are code samples on this page which don't work. If you know how to fix it, or have something better we could use instead, please let us know:
You've told us there is information missing from this page. Please tell us more about what's missing:
You've told us there is incorrect information on this page. If you know what we should change to make it correct, please tell us:
You've told us this page has unclear or confusing information. Please tell us more about what you found unclear or confusing, or let us know how we could make it clearer:
You've told us there is a spelling or grammar error on this page. Please tell us what's wrong:
You've told us this page has a problem. Please tell us more about what's wrong:
Thanks for helping to make the Unity documentation better!
When you visit any website, it may store or retrieve information on your browser, mostly in the form of cookies. This information might be about you, your preferences or your device and is mostly used to make the site work as you expect it to. The information does not usually directly identify you, but it can give you a more personalized web experience. Because we respect your right to privacy, you can choose not to allow some types of cookies. Click on the different category headings to find out more and change our default settings. However, blocking some types of cookies may impact your experience of the site and the services we are able to offer.
More information
These cookies enable the website to provide enhanced functionality and personalisation. They may be set by us or by third party providers whose services we have added to our pages. If you do not allow these cookies then some or all of these services may not function properly.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
These cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising. Some 3rd party video providers do not allow video views without targeting cookies. If you are experiencing difficulty viewing a video, you will need to set your cookie preferences for targeting to yes if you wish to view videos from these providers. Unity does not control this.
These cookies are necessary for the website to function and cannot be switched off in our systems. They are usually only set in response to actions made by you which amount to a request for services, such as setting your privacy preferences, logging in or filling in forms. You can set your browser to block or alert you about these cookies, but some parts of the site will not then work. These cookies do not store any personally identifiable information.