docs.unity3d.com
  • Manual
  • Scripting API
  • Changelog
  • License
Show / Hide Table of Contents
  • About Visual Scripting
    • Configure project settings
      • Add or remove available nodes
      • Add or remove types
      • Create or restore a backup
    • Choose a control scheme
    • Configure your preferences
    • Update Visual Scripting
    • Version control systems
    • Use Visual Scripting with Unity Cloud Build
  • Basic concepts in Visual Scripting
    • The interface
    • Nodes
    • Graphs
      • Subgraphs and State Units
      • Transitions
    • Script Machines and State Machines
    • Object types
      • Custom types
    • Variables
  • Develop application logic with Script Graphs
    • Create a new graph file
      • Create a new blank graph with the Project window
      • Create a new unassigned graph with the empty graph creation flow
      • Create and assign a graph to an existing GameObject
      • Create and assign a graph to a new GameObject
      • Create a graph on a Script Machine or State Machine
    • Attach a graph file to a Script Machine or State Machine
    • Open a graph file
      • Add a node to a Script Graph
      • Connect nodes in a Script Graph
      • Create and add a variable to a Script Graph
      • Create node groups
      • Add comments to a graph
    • Add a Subgraph to a Script Graph
      • Add a Trigger or Data port to a Script Graph
    • Add a State Unit to a Script Graph
    • Custom Events
      • Add a Custom Event node
      • Add a Trigger Custom Event node
    • Capture user input in an application
      • Capture input using the Input Manager
      • Add and configure a Player Input component
      • Capture input using the Input System package
    • Use relations to debug
      • Predictive and live debugging
      • Working with debug messages
    • Live edit
      • Live edit during runtime
  • Develop logic transitions with state graphs
    • Create a new state
    • Create a transition between states
  • Advanced customization and development
    • Refactor a C# script with Visual Scripting
      • Add the RenamedFrom attribute to a C# script
    • Custom C# nodes
      • Create a new simple Custom C# node
      • Add ports to your Custom C# node
      • Add logic to your Custom C# node
      • Add relations to your Custom C# node
      • Add documentation to your Custom C# node
      • Custom C# node attributes reference
    • Create a Custom Scripting Event node
      • Create a Custom Scripting Event Sender node
      • Trigger a Custom Scripting Event from a C# script
      • Listen to a Custom Scripting Event from a C# script
    • Use a custom type
      • Add the Inspectable attribute to a custom type
      • Create a custom PropertyDrawer for a custom type
  • Node reference
    • This node
    • Control node
    • Time node
    • Events
      • Event nodes
      • Input Event nodes
        • On Input System Event Button
        • On Input System Event Float
        • On Input System Event Vector 2
        • On Button Input
        • On Keyboard Input
        • On Mouse Down
        • On Mouse Drag
        • On Mouse Enter
        • On Mouse Exit
        • On Mouse Input
        • On Mouse Over
        • On Mouse Up As Button
        • On Mouse Up
    • Variable node
    • Nulls node
    • Formula node
    • Nesting
      • Input node
      • Output node
      • State Unit node
      • Subgraph node
    • Script graph nodes
    • State graph nodes
  • Developer's guide
  • Known Issues

Capture input with the Input System package

Important

If you don't complete the prerequisite configuration for your project, you can't use the Input System package with Visual Scripting. For more information, see Input System package prerequisites.

To use the Input System package with Visual Scripting to capture input in your project:

  1. Open or create a Script Graph attached to the GameObject that you want your users to move.

  2. Right-click anywhere in the Graph Editor to open the fuzzy finder.

  3. Go to Events > Input or search for On Input System Event.

  4. Select an Input System Event node. In this example, select the On Input System Event Vector 2 node to add it to the graph.

  5. Set the On Input System Event Vector 2 node's Input Action Change Type control to On Hold:

    An image of the Graph window, that displays an On Input System Event Vector 2 node. The Input Action Change Type control is open and being set to On Hold.

  6. In the Input Action list on the On Input System Event Vector 2 node, select an Input Action to trigger the node. In this example, select Move.

    Note

    By default, Visual Scripting displays all Input Actions from the Input Action asset attached to your current GameObject's Player Input component.

  7. Right-click anywhere in the Graph Editor to open the fuzzy finder.

    Tip

    If a context menu appears when you right-click, select Add Node to open the fuzzy finder.

  8. Go to Codebase > Unity Engine > Vector 3 or search for Vector 3 Get X.

  9. Select Get X to add the Vector 3 Get X node to the graph.

  10. Right-click anywhere in the Graph Editor to open the fuzzy finder.

  11. Go to Codebase > Unity Engine > Vector 3 or search for Vector 3 Get Z.

  12. Select Get Z to add the Vector 3 Get Z node to the graph.

  13. Select the Vector 2 Value output port on the On Input System Event Vector 2 node.

  14. Make a connection to the Target input port on the Vector 3 Get X node:

    An image of the Graph window, that displays the On Input System Event Vector 2 node, the Vector 3 Get X, and Vector 3 Get Z nodes. A connection is being made from the Vector 2 Value port on the On Input System Event Vector 2 node and the Target port on the Vector 3 Get X node.

  15. Select the Vector 2 Value output port.

  16. Make a connection to the Target port on the Vector 3 Get Z node.

  17. Right-click anywhere in the Graph Editor to open the fuzzy finder.

  18. Go to Codebase > Unity Engine > Transform or search for Translate.

  19. Select Transform: Translate (X, Y, Z) to add the Translate node to the graph.

  20. Select the Value: Float output port on the Vector 3 Get X node.

  21. Make a connection to the X float input port on the Translate node.

  22. Select the Value: Float output port on the Vector 3 Get X node.

  23. Make a connection to the Z float input port on the Translate node.

    The finished graph looks similar to the following image:

    An image of the Graph window, that displays the final result of a simple input capture graph with the Input System package. An On Input System Event Vector 2 node connects its output trigger port to the input trigger port on a Transform Translate node. The On Input System Event Vector 2 node's Vector 2 output port connects to the Vector 3 input on a Vector 3 Get X node and a Vector 3 Get Z node. The Vector 3 Get X node connects its Float result port to the X input port on the Translate node. The Vector 3 Get Z node connects its Float result port to the Z input port on the Translate node.

  24. To enter Play mode, select Play from the Unity Editor's Toolbar.

  25. While in the Game view, press a key defined under the Input Actions asset for Move in the Player Action Map.

The GameObject moves along the X or Z axis in the Game view, based on the key pressed and the Input Actions asset.

For more information on how to define Input Actions, see Input Action Assets in the Input System package documentation.

Additional resources

  • Capture user input in an application
  • Add and configure a Player Input component
  • On Input System Event Button node
  • On Input System Event Float node
  • On Input System Event Vector 2 node
In This Article
Back to top
Copyright © 2025 Unity Technologies — Trademarks and terms of use
  • Legal
  • Privacy Policy
  • Cookie Policy
  • Do Not Sell or Share My Personal Information