Split inference over multiple frames
To run a model a layer at a time, use the StartManualSchedule
method of the worker. This method creates an IEnumerator
object.
For example a model may take 50 milliseconds to execute. Running execution in a single frame would cause low or stuttering framerates in gameplay. Splitting the model to run across 10 frames could ideally spend 5 milliseconds of execution per frame allowing for smooth framerates.
The following code sample runs the model one layer per frame, and executes the rest of the Update
method only after the model finishes.
using UnityEngine;
using Unity.Sentis;
using System;
using System.Collections;
public class ModelExecutionInParts : MonoBehaviour
{
[SerializeField]
ModelAsset modelAsset;
IWorker m_Engine;
Tensor m_Input;
// Set this number higher for faster GPUs
const int k_LayersPerFrame = 20;
IEnumerator m_Schedule;
bool m_Started = false;
void OnEnable()
{
var model = ModelLoader.Load(modelAsset);
m_Engine = WorkerFactory.CreateWorker(BackendType.GPUCompute, model);
m_Input = TensorFloat.AllocZeros(new TensorShape(1024));
}
void Update()
{
if (!m_Started)
{
// StartManualSchedule starts the scheduling of the model
// it returns a IEnumerator to iterate over the model layers, scheduling each layer sequentially
m_Schedule = m_Engine.ExecuteLayerByLayer(m_Input);
m_Started = true;
}
int it = 0;
while (m_Schedule.MoveNext())
{
if (++it % k_LayersPerFrame == 0)
return;
}
var outputTensor = m_Engine.PeekOutput() as TensorFloat;
outputTensor.CompleteOperationsAndDownload();
// Set this flag to false if we want to run the network again
m_Started = false;
}
void OnDisable()
{
// Clean up Sentis resources.
m_Engine.Dispose();
m_Input.Dispose();
}
}
Refer to the Run a model a layer at a time
example in the sample scripts for an example.