Class GPUPixelBackend
Represents a GPUPixel backend ops.
Inherited Members
Namespace: Unity.Sentis
Syntax
public class GPUPixelBackend : CPUBackend, IBackend, IDisposable
Constructors
GPUPixelBackend(ITensorAllocator)
Initializes and returns an instance of GPUPixelBackend.
Declaration
public GPUPixelBackend(ITensorAllocator allocator = null)
Parameters
| Type | Name | Description |
|---|---|---|
| ITensorAllocator | allocator |
Properties
deviceType
Returns the DeviceType for the ops.
Declaration
public override DeviceType deviceType { get; }
Property Value
| Type | Description |
|---|---|
| DeviceType |
Overrides
Methods
Abs(TensorFloat, TensorFloat)
Computes an output tensor by applying the element-wise Abs math function: f(x) = f(x) = |x|.
Declaration
public override void Abs(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
Abs(TensorInt, TensorInt)
Computes an output tensor by applying the element-wise Abs math function: f(x) = f(x) = |x|.
Declaration
public override void Abs(TensorInt X, TensorInt O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | X | The input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
Overrides
Acos(TensorFloat, TensorFloat)
Computes an output tensor by applying the element-wise Acos trigonometric function: f(x) = acos(x).
Declaration
public override void Acos(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
Acosh(TensorFloat, TensorFloat)
Computes an output tensor by applying the element-wise Acosh trigonometric function: f(x) = acosh(x).
Declaration
public override void Acosh(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
Add(TensorFloat, TensorFloat, TensorFloat)
Performs an element-wise Add math operation: f(a, b) = a + b.
This supports numpy-style broadcasting of input tensors.
Declaration
public override void Add(TensorFloat A, TensorFloat B, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | A | The first input tensor. |
| TensorFloat | B | The second input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
Add(TensorInt, TensorInt, TensorInt)
Performs an element-wise Add math operation: f(a, b) = a + b.
This supports numpy-style broadcasting of input tensors.
Declaration
public override void Add(TensorInt A, TensorInt B, TensorInt O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | A | The first input tensor. |
| TensorInt | B | The second input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
Overrides
And(TensorInt, TensorInt, TensorInt)
Declaration
public override void And(TensorInt A, TensorInt B, TensorInt O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | A | |
| TensorInt | B | |
| TensorInt | O |
Overrides
ArgMax(TensorFloat, TensorInt, Int32, Boolean, Boolean)
Computes the indices of the maximum elements of the input tensor along a given axis.
Declaration
public override void ArgMax(TensorFloat X, TensorInt O, int axis, bool keepdim, bool selectLastIndex)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
| Int32 | axis | The axis along which to reduce. |
| Boolean | keepdim | Whether to keep the reduced axes in the output tensor. |
| Boolean | selectLastIndex | Whether to perform the operation from the back of the axis. |
Overrides
ArgMax(TensorInt, TensorInt, Int32, Boolean, Boolean)
Computes the indices of the maximum elements of the input tensor along a given axis.
Declaration
public override void ArgMax(TensorInt X, TensorInt O, int axis, bool keepdim, bool selectLastIndex)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | X | The input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
| Int32 | axis | The axis along which to reduce. |
| Boolean | keepdim | Whether to keep the reduced axes in the output tensor. |
| Boolean | selectLastIndex | Whether to perform the operation from the back of the axis. |
Overrides
ArgMin(TensorFloat, TensorInt, Int32, Boolean, Boolean)
Computes the indices of the minimum elements of the input tensor along a given axis.
Declaration
public override void ArgMin(TensorFloat X, TensorInt O, int axis, bool keepdim, bool selectLastIndex)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
| Int32 | axis | The axis along which to reduce. |
| Boolean | keepdim | Whether to keep the reduced axes in the output tensor. |
| Boolean | selectLastIndex | Whether to perform the operation from the back of the axis. |
Overrides
ArgMin(TensorInt, TensorInt, Int32, Boolean, Boolean)
Computes the indices of the minimum elements of the input tensor along a given axis.
Declaration
public override void ArgMin(TensorInt X, TensorInt O, int axis, bool keepdim, bool selectLastIndex)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | X | The input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
| Int32 | axis | The axis along which to reduce. |
| Boolean | keepdim | Whether to keep the reduced axes in the output tensor. |
| Boolean | selectLastIndex | Whether to perform the operation from the back of the axis. |
Overrides
Asin(TensorFloat, TensorFloat)
Computes an output tensor by applying the element-wise Asin trigonometric function: f(x) = asin(x).
Declaration
public override void Asin(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
Asinh(TensorFloat, TensorFloat)
Computes an output tensor by applying the element-wise Asinh trigonometric function: f(x) = asinh(x).
Declaration
public override void Asinh(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
Atan(TensorFloat, TensorFloat)
Computes an output tensor by applying the element-wise Atan trigonometric function: f(x) = atan(x).
Declaration
public override void Atan(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
Atanh(TensorFloat, TensorFloat)
Computes an output tensor by applying the element-wise Atanh trigonometric function: f(x) = atanh(x).
Declaration
public override void Atanh(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
AveragePool(TensorFloat, TensorFloat, Int32[], Int32[], Int32[])
Calculates an output tensor by pooling the mean values of the input tensor across its spatial dimensions according to the given pool and stride values.
Declaration
public override void AveragePool(TensorFloat X, TensorFloat O, int[] kernelShape, int[] strides, int[] pads)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| Int32[] | kernelShape | The size of the kernel along each spatial axis. |
| Int32[] | strides | The stride along each spatial axis. |
| Int32[] | pads | The lower and upper padding values for each spatial dimension. For example, [pad_left, pad_right] for 1D, or [pad_top, pad_bottom, pad_left, pad_right] for 2D. |
Overrides
BatchNormalization(TensorFloat, TensorFloat, TensorFloat, TensorFloat, TensorFloat, TensorFloat, Single)
Computes the mean variance on the last dimension of the input tensor and normalizes it according to scale and bias tensors.
Declaration
public override void BatchNormalization(TensorFloat X, TensorFloat S, TensorFloat B, TensorFloat mean, TensorFloat variance, TensorFloat O, float epsilon)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | S | The scale tensor. |
| TensorFloat | B | The bias tensor. |
| TensorFloat | mean | The mean tensor. |
| TensorFloat | variance | The variance tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| Single | epsilon | The epsilon value the layer uses to avoid division by zero. |
Overrides
Bernoulli(TensorFloat, Tensor, Nullable<Single>)
Generates an output tensor with values 0 or 1 from a Bernoulli distribution. The input tensor contains the probabilities to use for generating the output values.
Declaration
public override void Bernoulli(TensorFloat X, Tensor O, float? seed)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The probabilities input tensor. |
| Tensor | O | The output tensor to be computed and filled. |
| Nullable<Single> | seed | The optional seed to use for the random number generation. If this is |
Overrides
Cast(Tensor, Tensor)
Computes the output tensor using an element-wise Cast function: f(x) = (float)x or f(x) = (int)x depending on the value of toType.
Declaration
public override void Cast(Tensor X, Tensor O)
Parameters
| Type | Name | Description |
|---|---|---|
| Tensor | X | The input tensor. |
| Tensor | O | The output tensor to be computed and filled. |
Overrides
Ceil(TensorFloat, TensorFloat)
Computes an output tensor by applying the element-wise Ceil math function: f(x) = ceil(x).
Declaration
public override void Ceil(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
Celu(TensorFloat, TensorFloat, Single)
Computes an output tensor by applying the element-wise Celu activation function: f(x) = max(0, x) + min(0, alpha * (exp(x / alpha) - 1)).
Declaration
public override void Celu(TensorFloat X, TensorFloat O, float alpha)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| Single | alpha | The alpha value to use for the |
Overrides
Clip(TensorFloat, TensorFloat, Single, Single)
Computes an output tensor by applying the element-wise Clip math function: f(x) = clamp(x, min, max).
Declaration
public override void Clip(TensorFloat X, TensorFloat O, float min, float max)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| Single | min | The lower clip value. |
| Single | max | The upper clip value. |
Overrides
Concat(Tensor[], Tensor, Int32)
Calculates an output tensor by concatenating the input tensors along a given axis.
Declaration
public override void Concat(Tensor[] inputs, Tensor O, int axis)
Parameters
| Type | Name | Description |
|---|---|---|
| Tensor[] | inputs | The input tensors. |
| Tensor | O | The output tensor to be computed and filled. |
| Int32 | axis | The axis along which to concatenate the input tensors. |
Overrides
Conv(TensorFloat, TensorFloat, TensorFloat, TensorFloat, Int32, Span<Int32>, Span<Int32>, Span<Int32>, FusableActivation)
Applies a convolution filter to an input tensor.
Declaration
public override void Conv(TensorFloat X, TensorFloat K, TensorFloat B, TensorFloat O, int groups, Span<int> strides, Span<int> pads, Span<int> dilations, FusableActivation fusedActivation)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | K | The filter tensor. |
| TensorFloat | B | The optional bias tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| Int32 | groups | The number of groups that input channels and output channels are divided into. |
| Span<Int32> | strides | The optional stride value for each spatial dimension of the filter. |
| Span<Int32> | pads | The optional lower and upper padding values for each spatial dimension of the filter. |
| Span<Int32> | dilations | The optional dilation value of each spatial dimension of the filter. |
| FusableActivation | fusedActivation | The fused activation type to apply after the convolution. |
Overrides
ConvTranspose(TensorFloat, TensorFloat, TensorFloat, TensorFloat, Span<Int32>, Span<Int32>, Span<Int32>, FusableActivation)
Applies a transpose convolution filter to an input tensor.
Declaration
public override void ConvTranspose(TensorFloat X, TensorFloat W, TensorFloat B, TensorFloat O, Span<int> strides, Span<int> pads, Span<int> outputPadding, FusableActivation fusedActivation)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | W | The filter tensor. |
| TensorFloat | B | The optional bias tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| Span<Int32> | strides | The optional stride value for each spatial dimension of the filter. |
| Span<Int32> | pads | The optional lower and upper padding values for each spatial dimension of the filter. |
| Span<Int32> | outputPadding | The output padding value for each spatial dimension in the filter. |
| FusableActivation | fusedActivation | The fused activation type to apply after the convolution. |
Overrides
Cos(TensorFloat, TensorFloat)
Computes an output tensor by applying the element-wise Cos trigonometric function: f(x) = cos(x).
Declaration
public override void Cos(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
Cosh(TensorFloat, TensorFloat)
Computes an output tensor by applying the element-wise Cosh trigonometric function: f(x) = cosh(x).
Declaration
public override void Cosh(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
CumSum(TensorFloat, TensorFloat, Int32, Boolean, Boolean)
Performs the cumulative sum along a given axis.
Declaration
public override void CumSum(TensorFloat X, TensorFloat O, int axis, bool reverse, bool exclusive)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| Int32 | axis | The axis along which to apply the cumulative sum. |
| Boolean | reverse | Whether to perform the cumulative sum from the end of the axis. |
| Boolean | exclusive | Whether to include the respective input element in the cumulative sum. |
Overrides
CumSum(TensorInt, TensorInt, Int32, Boolean, Boolean)
Performs the cumulative sum along a given axis.
Declaration
public override void CumSum(TensorInt X, TensorInt O, int axis, bool reverse, bool exclusive)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | X | The input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
| Int32 | axis | The axis along which to apply the cumulative sum. |
| Boolean | reverse | Whether to perform the cumulative sum from the end of the axis. |
| Boolean | exclusive | Whether to include the respective input element in the cumulative sum. |
Overrides
Dense(TensorFloat, TensorFloat, TensorFloat, TensorFloat, FusableActivation)
Performs a matrix multiplication operation: f(x, w, b) = X x W + B.
This supports numpy-style broadcasting of input tensors.
Declaration
public override void Dense(TensorFloat X, TensorFloat W, TensorFloat B, TensorFloat O, FusableActivation fusedActivation)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | W | The weights tensor. |
| TensorFloat | B | The bias tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| FusableActivation | fusedActivation | The fused activation to apply to the output tensor after the dense operation. |
Overrides
DepthToSpace(TensorFloat, TensorFloat, Int32, DepthToSpaceMode)
Computes the output tensor by permuting data from depth into blocks of spatial data.
Declaration
public override void DepthToSpace(TensorFloat X, TensorFloat O, int blocksize, DepthToSpaceMode mode)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| Int32 | blocksize | The size of the blocks to move the depth data into. |
| DepthToSpaceMode | mode | The ordering of the data in the output tensor as a |
Overrides
Div(TensorFloat, TensorFloat, TensorFloat)
Performs an element-wise Div math operation: f(a, b) = a / b.
This supports numpy-style broadcasting of input tensors.
Declaration
public override void Div(TensorFloat A, TensorFloat B, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | A | The first input tensor. |
| TensorFloat | B | The second input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
Div(TensorInt, TensorInt, TensorInt)
Performs an element-wise Div math operation: f(a, b) = a / b.
This supports numpy-style broadcasting of input tensors.
Declaration
public override void Div(TensorInt A, TensorInt B, TensorInt O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | A | The first input tensor. |
| TensorInt | B | The second input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
Overrides
Elu(TensorFloat, TensorFloat, Single)
Computes an output tensor by applying the element-wise Elu activation function: f(x) = x if x >= 0, otherwise f(x) = alpha * (e^x - 1).
Declaration
public override void Elu(TensorFloat X, TensorFloat O, float alpha)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| Single | alpha | The alpha value to use for the |
Overrides
Equal(TensorFloat, TensorFloat, TensorInt)
Performs an element-wise Equal logical comparison operation: f(a, b) = 1 if a == b, otherwise f(x) = 0.
This supports numpy-style broadcasting of input tensors.
Declaration
public override void Equal(TensorFloat A, TensorFloat B, TensorInt O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | A | The first input tensor. |
| TensorFloat | B | The second input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
Overrides
Equal(TensorInt, TensorInt, TensorInt)
Performs an element-wise Equal logical comparison operation: f(a, b) = 1 if a == b, otherwise f(x) = 0.
This supports numpy-style broadcasting of input tensors.
Declaration
public override void Equal(TensorInt A, TensorInt B, TensorInt O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | A | The first input tensor. |
| TensorInt | B | The second input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
Overrides
Erf(TensorFloat, TensorFloat)
Computes an output tensor by applying the element-wise Erf activation function: f(x) = erf(x).
Declaration
public override void Erf(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
Exp(TensorFloat, TensorFloat)
Computes an output tensor by applying the element-wise Exp math function: f(x) = exp(x).
Declaration
public override void Exp(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
Expand(Tensor, Tensor)
Calculates an output tensor by broadcasting the input tensor into a given shape.
Declaration
public override void Expand(Tensor X, Tensor O)
Parameters
| Type | Name | Description |
|---|---|---|
| Tensor | X | The input tensor. |
| Tensor | O | The output tensor to be computed and filled. |
Overrides
Floor(TensorFloat, TensorFloat)
Computes an output tensor by applying the element-wise Floor math function: f(x) = floor(x).
Declaration
public override void Floor(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
FMod(TensorFloat, TensorFloat, TensorFloat)
Performs an element-wise Mod math operation: f(a, b) = a % b.
The sign of the remainder is the same as the sign of the dividend, as in C#.
This supports numpy-style broadcasting of input tensors.
Declaration
public override void FMod(TensorFloat A, TensorFloat B, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | A | The first input tensor. |
| TensorFloat | B | The second input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
FMod(TensorInt, TensorInt, TensorInt)
Performs an element-wise Mod math operation: f(a, b) = a % b.
The sign of the remainder is the same as the sign of the dividend, as in C#.
This supports numpy-style broadcasting of input tensors.
Declaration
public override void FMod(TensorInt A, TensorInt B, TensorInt O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | A | The first input tensor. |
| TensorInt | B | The second input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
Overrides
Gather(Tensor, TensorInt, Tensor, Int32)
Takes values from the input tensor indexed by the indices tensor along a given axis and concatenates them.
Declaration
public override void Gather(Tensor X, TensorInt indices, Tensor O, int axis)
Parameters
| Type | Name | Description |
|---|---|---|
| Tensor | X | The input tensor. |
| TensorInt | indices | The indices tensor. |
| Tensor | O | The output tensor to be computed and filled. |
| Int32 | axis | The axis along which to gather. |
Overrides
GatherElements(Tensor, TensorInt, Tensor, Int32)
Takes values from the input tensor indexed by the indices tensor along a given axis and concatenates them.
Declaration
public override void GatherElements(Tensor X, TensorInt indices, Tensor O, int axis)
Parameters
| Type | Name | Description |
|---|---|---|
| Tensor | X | The input tensor. |
| TensorInt | indices | The indices tensor. |
| Tensor | O | The output tensor to be computed and filled. |
| Int32 | axis | The axis along which to gather. |
Overrides
GatherND(Tensor, TensorInt, Tensor, Int32)
Takes slices of values from the batched input tensor indexed by the indices tensor.
Declaration
public override void GatherND(Tensor X, TensorInt indices, Tensor O, int batchDims)
Parameters
| Type | Name | Description |
|---|---|---|
| Tensor | X | The input tensor. |
| TensorInt | indices | The indices tensor. |
| Tensor | O | The output tensor to be computed and filled. |
| Int32 | batchDims | The number of batch dimensions of the input tensor, the gather begins at the next dimension. |
Overrides
Gelu(TensorFloat, TensorFloat)
Computes an output tensor by applying the element-wise Gelu activation function: f(x) = x / 2 * (1 + erf(x / sqrt(2))).
Declaration
public override void Gelu(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
GlobalAveragePool(TensorFloat, TensorFloat)
Calculates an output tensor by pooling the mean values of the input tensor across all of its spatial dimensions. The spatial dimensions of the output are size 1.
Declaration
public override void GlobalAveragePool(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
GlobalMaxPool(TensorFloat, TensorFloat)
Calculates an output tensor by pooling the maximum values of the input tensor across all of its spatial dimensions. The spatial dimensions of the output are size 1.
Declaration
public override void GlobalMaxPool(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
Greater(TensorFloat, TensorFloat, TensorInt)
Performs an element-wise Greater logical comparison operation: f(a, b) = 1 if a > b, otherwise f(x) = 0.
This supports numpy-style broadcasting of input tensors.
Declaration
public override void Greater(TensorFloat A, TensorFloat B, TensorInt O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | A | The first input tensor. |
| TensorFloat | B | The second input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
Overrides
Greater(TensorInt, TensorInt, TensorInt)
Performs an element-wise Greater logical comparison operation: f(a, b) = 1 if a > b, otherwise f(x) = 0.
This supports numpy-style broadcasting of input tensors.
Declaration
public override void Greater(TensorInt A, TensorInt B, TensorInt O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | A | The first input tensor. |
| TensorInt | B | The second input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
Overrides
GreaterOrEqual(TensorFloat, TensorFloat, TensorInt)
Performs an element-wise GreaterOrEqual logical comparison operation: f(a, b) = 1 if a >= b, otherwise f(x) = 0.
This supports numpy-style broadcasting of input tensors.
Declaration
public override void GreaterOrEqual(TensorFloat A, TensorFloat B, TensorInt O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | A | The first input tensor. |
| TensorFloat | B | The second input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
Overrides
GreaterOrEqual(TensorInt, TensorInt, TensorInt)
Performs an element-wise GreaterOrEqual logical comparison operation: f(a, b) = 1 if a >= b, otherwise f(x) = 0.
This supports numpy-style broadcasting of input tensors.
Declaration
public override void GreaterOrEqual(TensorInt A, TensorInt B, TensorInt O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | A | The first input tensor. |
| TensorInt | B | The second input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
Overrides
Hardmax(TensorFloat, TensorFloat, Int32)
Computes an output tensor by applying the Hardmax activation function along an axis: f(x, axis) = 1 if x is the first maximum value along the specified axis, otherwise f(x) = 0.
Declaration
public override void Hardmax(TensorFloat X, TensorFloat O, int axis)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| Int32 | axis | The axis along which to apply the |
Overrides
HardSigmoid(TensorFloat, TensorFloat, Single, Single)
Computes an output tensor by applying the element-wise HardSigmoid activation function: f(x) = clamp(alpha * x + beta, 0, 1).
Declaration
public override void HardSigmoid(TensorFloat X, TensorFloat O, float alpha, float beta)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| Single | alpha | The alpha value to use for the |
| Single | beta | The beta value to use for the |
Overrides
HardSwish(TensorFloat, TensorFloat)
Computes an output tensor by applying the element-wise HardSwish activation function: f(x) = x * max(0, min(1, 1/6 * x + 0.5)).
Declaration
public override void HardSwish(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
InstanceNormalization(TensorFloat, TensorFloat, TensorFloat, TensorFloat, Single)
Computes the mean variance on the spatial dimensions of the input tensor and normalizes them according to scale and bias tensors.
Declaration
public override void InstanceNormalization(TensorFloat X, TensorFloat S, TensorFloat B, TensorFloat O, float epsilon)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | S | The scale tensor. |
| TensorFloat | B | The bias tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| Single | epsilon | The epsilon value the layer uses to avoid division by zero. |
Overrides
IsInf(TensorFloat, TensorInt, Boolean, Boolean)
Performs an element-wise IsInf logical operation: f(x) = 1 elementwise if x is +Inf and detectPositive is true, or x is -Inf and detectNegative is true. Otherwise f(x) = 0.
Declaration
public override void IsInf(TensorFloat X, TensorInt O, bool detectNegative, bool detectPositive)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
| Boolean | detectNegative | Whether to detect negative infinities in the |
| Boolean | detectPositive | Whether to detect positive infinities in the |
Overrides
IsNaN(TensorFloat, TensorInt)
Performs an element-wise IsNaN logical operation: f(x) = 1 if x is NaN, otherwise f(x) = 0.
Declaration
public override void IsNaN(TensorFloat X, TensorInt O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
Overrides
LayerNormalization(TensorFloat, TensorFloat, TensorFloat, TensorFloat, Single)
Computes the mean variance on the last dimension of the input tensor and normalizes it according to scale and bias tensors.
Declaration
public override void LayerNormalization(TensorFloat X, TensorFloat S, TensorFloat B, TensorFloat O, float epsilon)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | S | The scale tensor. |
| TensorFloat | B | The bias tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| Single | epsilon | The epsilon value the layer uses to avoid division by zero. |
Overrides
LeakyRelu(TensorFloat, TensorFloat, Single)
Computes an output tensor by applying the element-wise LeakyRelu activation function: f(x) = x if x >= 0, otherwise f(x) = alpha * x.
Declaration
public override void LeakyRelu(TensorFloat X, TensorFloat O, float alpha)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| Single | alpha | The alpha value to use for the |
Overrides
Less(TensorFloat, TensorFloat, TensorInt)
Performs an element-wise Less logical comparison operation: f(a, b) = 1 if a < b, otherwise f(x) = 0.
This supports numpy-style broadcasting of input tensors.
Declaration
public override void Less(TensorFloat A, TensorFloat B, TensorInt O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | A | The first input tensor. |
| TensorFloat | B | The second input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
Overrides
Less(TensorInt, TensorInt, TensorInt)
Performs an element-wise Less logical comparison operation: f(a, b) = 1 if a < b, otherwise f(x) = 0.
This supports numpy-style broadcasting of input tensors.
Declaration
public override void Less(TensorInt A, TensorInt B, TensorInt O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | A | The first input tensor. |
| TensorInt | B | The second input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
Overrides
LessOrEqual(TensorFloat, TensorFloat, TensorInt)
Performs an element-wise LessOrEqual logical comparison operation: f(a, b) = 1 if a <= b, otherwise f(x) = 0.
This supports numpy-style broadcasting of input tensors.
Declaration
public override void LessOrEqual(TensorFloat A, TensorFloat B, TensorInt O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | A | The first input tensor. |
| TensorFloat | B | The second input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
Overrides
LessOrEqual(TensorInt, TensorInt, TensorInt)
Performs an element-wise LessOrEqual logical comparison operation: f(a, b) = 1 if a <= b, otherwise f(x) = 0.
This supports numpy-style broadcasting of input tensors.
Declaration
public override void LessOrEqual(TensorInt A, TensorInt B, TensorInt O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | A | The first input tensor. |
| TensorInt | B | The second input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
Overrides
Log(TensorFloat, TensorFloat)
Computes an output tensor by applying the element-wise Log math function: f(x) = log(x).
Declaration
public override void Log(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
LogSoftmax(TensorFloat, TensorFloat, Int32)
Computes an output tensor by applying the LogSoftmax activation function along an axis: f(x, axis) = log(Softmax(x, axis)).
Declaration
public override void LogSoftmax(TensorFloat X, TensorFloat O, int axis)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| Int32 | axis | The axis along which to apply the |
Overrides
MatMul(TensorFloat, TensorFloat, TensorFloat)
Performs a multi-dimensional matrix multiplication operation: f(a, b) = a x b.
Declaration
public override void MatMul(TensorFloat X, TensorFloat Y, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The first input tensor. |
| TensorFloat | Y | The second input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
MatMul2D(TensorFloat, TensorFloat, TensorFloat, Boolean, Boolean)
Performs a matrix multiplication operation with optional transposes: f(a, b) = a' x b'.
Declaration
public override void MatMul2D(TensorFloat X, TensorFloat Y, TensorFloat O, bool xTranspose, bool yTranspose)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The first input tensor. |
| TensorFloat | Y | The second input tensor. |
| TensorFloat | O | The output tensor. |
| Boolean | xTranspose | Whether to transpose the first input tensor before performing the matrix multiplication. |
| Boolean | yTranspose | Whether to transpose the second input tensor before performing the matrix multiplication. |
Overrides
Max(TensorFloat[], TensorFloat)
Performs an element-wise Max math operation: f(x1, x2 ... xn) = max(x1, x2 ... xn).
This supports numpy-style broadcasting of input tensors.
Declaration
public override void Max(TensorFloat[] inputs, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat[] | inputs | |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
Max(TensorInt[], TensorInt)
Performs an element-wise Max math operation: f(x1, x2 ... xn) = max(x1, x2 ... xn).
This supports numpy-style broadcasting of input tensors.
Declaration
public override void Max(TensorInt[] inputs, TensorInt O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt[] | inputs | |
| TensorInt | O | The output tensor to be computed and filled. |
Overrides
MaxPool(TensorFloat, TensorFloat, Int32[], Int32[], Int32[])
Calculates an output tensor by pooling the maximum values of the input tensor across its spatial dimensions according to the given pool and stride values.
Declaration
public override void MaxPool(TensorFloat X, TensorFloat O, int[] kernelShape, int[] strides, int[] pads)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| Int32[] | kernelShape | The size of the kernel along each spatial axis. |
| Int32[] | strides | The stride along each spatial axis. |
| Int32[] | pads | The lower and upper padding values for each spatial dimension. For example, [pad_left, pad_right] for 1D, or [pad_top, pad_bottom, pad_left, pad_right] for 2D. |
Overrides
Mean(TensorFloat[], TensorFloat)
Performs an element-wise Mean math operation: f(x1, x2 ... xn) = (x1 + x2 ... xn) / n.
This supports numpy-style broadcasting of input tensors.
Declaration
public override void Mean(TensorFloat[] inputs, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat[] | inputs | |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
MemClear(Tensor)
Sets the entries of a tensor to 0.
Declaration
public override void MemClear(Tensor O)
Parameters
| Type | Name | Description |
|---|---|---|
| Tensor | O | The output tensor to be computed and filled. |
Overrides
MemCopy(Tensor, Tensor)
Creates a copy of a given input tensor with the same shape and values.
Declaration
public override void MemCopy(Tensor X, Tensor O)
Parameters
| Type | Name | Description |
|---|---|---|
| Tensor | X | The input tensor. |
| Tensor | O | The output tensor to be computed and filled. |
Overrides
MemSet(TensorFloat, Single)
Sets the entries of a tensor to a given fill value.
Declaration
public override void MemSet(TensorFloat O, float value)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | O | The output tensor to be computed and filled. |
| Single | value | The fill value. |
Overrides
MemSet(TensorInt, Int32)
Sets the entries of a tensor to a given fill value.
Declaration
public override void MemSet(TensorInt O, int value)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | O | The output tensor to be computed and filled. |
| Int32 | value | The fill value. |
Overrides
Min(TensorFloat[], TensorFloat)
Performs an element-wise Min math operation: f(x1, x2 ... xn) = min(x1, x2 ... xn).
This supports numpy-style broadcasting of input tensors.
Declaration
public override void Min(TensorFloat[] inputs, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat[] | inputs | |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
Min(TensorInt[], TensorInt)
Performs an element-wise Min math operation: f(x1, x2 ... xn) = min(x1, x2 ... xn).
This supports numpy-style broadcasting of input tensors.
Declaration
public override void Min(TensorInt[] inputs, TensorInt O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt[] | inputs | |
| TensorInt | O | The output tensor to be computed and filled. |
Overrides
Mod(TensorInt, TensorInt, TensorInt)
Performs an element-wise Mod math operation: f(a, b) = a % b.
The sign of the remainder is the same as the sign of the divisor, as in Python.
This supports numpy-style broadcasting of input tensors.
Declaration
public override void Mod(TensorInt A, TensorInt B, TensorInt O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | A | The first input tensor. |
| TensorInt | B | The second input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
Overrides
Mul(TensorFloat, TensorFloat, TensorFloat)
Performs an element-wise Mul math operation: f(a, b) = a * b.
This supports numpy-style broadcasting of input tensors.
Declaration
public override void Mul(TensorFloat A, TensorFloat B, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | A | The first input tensor. |
| TensorFloat | B | The second input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
Mul(TensorInt, TensorInt, TensorInt)
Performs an element-wise Mul math operation: f(a, b) = a * b.
This supports numpy-style broadcasting of input tensors.
Declaration
public override void Mul(TensorInt A, TensorInt B, TensorInt O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | A | The first input tensor. |
| TensorInt | B | The second input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
Overrides
Neg(TensorFloat, TensorFloat)
Computes an output tensor by applying the element-wise Neg math function: f(x) = -x.
Declaration
public override void Neg(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
Neg(TensorInt, TensorInt)
Computes an output tensor by applying the element-wise Neg math function: f(x) = -x.
Declaration
public override void Neg(TensorInt X, TensorInt O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | X | The input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
Overrides
Not(TensorInt, TensorInt)
Performs an element-wise Not logical operation: f(x) = ~x.
Declaration
public override void Not(TensorInt X, TensorInt O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | X | The input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
Overrides
OneHot(TensorInt, TensorFloat, Int32, Int32, Single, Single)
Generates a one-hot tensor with a given depth, indices and on and off values.
Declaration
public override void OneHot(TensorInt X, TensorFloat O, int axis, int depth, float offValue, float onValue)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | X | |
| TensorFloat | O | The output tensor to be computed and filled. |
| Int32 | axis | The axis along which the operation adds the one-hot representation. |
| Int32 | depth | The depth of the one-hot tensor. |
| Single | offValue | The value to use for an off element. |
| Single | onValue | The value to use for an on element. |
Overrides
OneHot(TensorInt, TensorInt, Int32, Int32, Int32, Int32)
Generates a one-hot tensor with a given depth, indices and on and off values.
Declaration
public override void OneHot(TensorInt X, TensorInt O, int axis, int depth, int offValue, int onValue)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | X | |
| TensorInt | O | The output tensor to be computed and filled. |
| Int32 | axis | The axis along which the operation adds the one-hot representation. |
| Int32 | depth | The depth of the one-hot tensor. |
| Int32 | offValue | The value to use for an off element. |
| Int32 | onValue | The value to use for an on element. |
Overrides
Or(TensorInt, TensorInt, TensorInt)
Performs an element-wise Or logical operation: f(a, b) = a | b.
This supports numpy-style broadcasting of input tensors.
Declaration
public override void Or(TensorInt A, TensorInt B, TensorInt O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | A | The first input tensor. |
| TensorInt | B | The second input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
Overrides
Pad(TensorFloat, TensorFloat, ReadOnlySpan<Int32>, PadMode, Single)
Calculates the output tensor by adding padding to the input tensor according to the given padding values and mode.
Declaration
public override void Pad(TensorFloat X, TensorFloat O, ReadOnlySpan<int> pad, PadMode padMode, float constant)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| ReadOnlySpan<Int32> | pad | The lower and upper padding values for each dimension. |
| PadMode | padMode | The |
| Single | constant | The constant value to fill with when using |
Overrides
Pow(TensorFloat, TensorFloat, TensorFloat)
Performs an element-wise Pow math operation: f(a, b) = pow(a, b).
This supports numpy-style broadcasting of input tensors.
Declaration
public override void Pow(TensorFloat A, TensorFloat B, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | A | The first input tensor. |
| TensorFloat | B | The second input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
Pow(TensorFloat, TensorInt, TensorFloat)
Performs an element-wise Pow math operation: f(a, b) = pow(a, b).
This supports numpy-style broadcasting of input tensors.
Declaration
public override void Pow(TensorFloat A, TensorInt B, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | A | The first input tensor. |
| TensorInt | B | The second input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
PRelu(TensorFloat, TensorFloat, TensorFloat)
Computes an output tensor by applying the element-wise PRelu activation function: f(x) = x if x >= 0, otherwise f(x) = slope * x.
Declaration
public override void PRelu(TensorFloat X, TensorFloat S, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | S | |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
RandomNormal(TensorFloat, Single, Single, Nullable<Single>)
Generates an output tensor of a given shape with random values in a normal distribution with given mean and scale, and an optional seed value.
Declaration
public override void RandomNormal(TensorFloat O, float mean, float scale, float? seed)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | O | The output tensor to be computed and filled. |
| Single | mean | The mean of the normal distribution to use to generate the output. |
| Single | scale | The standard deviation of the normal distribution to use to generate the output. |
| Nullable<Single> | seed | The optional seed to use for the random number generation. If this is |
Overrides
RandomUniform(TensorFloat, Single, Single, Nullable<Single>)
Generates an output tensor of a given shape with random values in a uniform distribution between a given low and high, and an optional seed value.
Declaration
public override void RandomUniform(TensorFloat O, float low, float high, float? seed)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | O | The output tensor to be computed and filled. |
| Single | low | The lower end of the interval of the uniform distribution to use to generate the output. |
| Single | high | The upper end of the interval of the uniform distribution to use to generate the output. |
| Nullable<Single> | seed | The optional seed to use for the random number generation. If this is |
Overrides
Range(TensorFloat, Single, Single)
Generates a 1D output tensor where the values form an arithmetic progression defined by the start and delta values.
Declaration
public override void Range(TensorFloat O, float start, float delta)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | O | The output tensor to be computed and filled. |
| Single | start | The first value in the range. |
| Single | delta | The delta between subsequent values in the range. |
Overrides
Range(TensorInt, Int32, Int32)
Generates a 1D output tensor where the values form an arithmetic progression defined by the start and delta values.
Declaration
public override void Range(TensorInt O, int start, int delta)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | O | The output tensor to be computed and filled. |
| Int32 | start | The first value in the range. |
| Int32 | delta | The delta between subsequent values in the range. |
Overrides
Reciprocal(TensorFloat, TensorFloat)
Computes an output tensor by applying the element-wise Reciprocal math function: f(x) = 1 / x.
Declaration
public override void Reciprocal(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
ReduceL1(TensorFloat, TensorFloat, ReadOnlySpan<Int32>, Boolean)
Reduces an input tensor along the given axes using the ReduceL1 operation: f(x1, x2 ... xn) = |x1| + |x2| + ... + |xn|.
Declaration
public override void ReduceL1(TensorFloat X, TensorFloat O, ReadOnlySpan<int> axes, bool keepdim)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| ReadOnlySpan<Int32> | axes | The axes along which to reduce. |
| Boolean | keepdim | Whether to keep the reduced axes in the output tensor. |
Overrides
ReduceL1(TensorInt, TensorInt, ReadOnlySpan<Int32>, Boolean)
Reduces an input tensor along the given axes using the ReduceL1 operation: f(x1, x2 ... xn) = |x1| + |x2| + ... + |xn|.
Declaration
public override void ReduceL1(TensorInt X, TensorInt O, ReadOnlySpan<int> axes, bool keepdim)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | X | The input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
| ReadOnlySpan<Int32> | axes | The axes along which to reduce. |
| Boolean | keepdim | Whether to keep the reduced axes in the output tensor. |
Overrides
ReduceL2(TensorFloat, TensorFloat, ReadOnlySpan<Int32>, Boolean)
Reduces an input tensor along the given axes using the ReduceL2 operation: f(x1, x2 ... xn) = sqrt(x1² + x2² + ... + xn²).
Declaration
public override void ReduceL2(TensorFloat X, TensorFloat O, ReadOnlySpan<int> axes, bool keepdim)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| ReadOnlySpan<Int32> | axes | The axes along which to reduce. |
| Boolean | keepdim | Whether to keep the reduced axes in the output tensor. |
Overrides
ReduceLogSum(TensorFloat, TensorFloat, ReadOnlySpan<Int32>, Boolean)
Reduces an input tensor along the given axes using the ReduceLogSum operation: f(x1, x2 ... xn) = log(x1 + x2 + ... + xn).
Declaration
public override void ReduceLogSum(TensorFloat X, TensorFloat O, ReadOnlySpan<int> axes, bool keepdim)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| ReadOnlySpan<Int32> | axes | The axes along which to reduce. |
| Boolean | keepdim | Whether to keep the reduced axes in the output tensor. |
Overrides
ReduceLogSumExp(TensorFloat, TensorFloat, ReadOnlySpan<Int32>, Boolean)
Reduces an input tensor along the given axes using the ReduceLogSumExp operation: f(x1, x2 ... xn) = log(e^x1 + e^x2 + ... + e^xn).
Declaration
public override void ReduceLogSumExp(TensorFloat X, TensorFloat O, ReadOnlySpan<int> axes, bool keepdim)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| ReadOnlySpan<Int32> | axes | The axes along which to reduce. |
| Boolean | keepdim | Whether to keep the reduced axes in the output tensor. |
Overrides
ReduceMax(TensorFloat, TensorFloat, ReadOnlySpan<Int32>, Boolean)
Reduces an input tensor along the given axes using the ReduceMax operation: f(x1, x2 ... xn) = max(x1, x2, ... , xn).
Declaration
public override void ReduceMax(TensorFloat X, TensorFloat O, ReadOnlySpan<int> axes, bool keepdim)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| ReadOnlySpan<Int32> | axes | The axes along which to reduce. |
| Boolean | keepdim | Whether to keep the reduced axes in the output tensor. |
Overrides
ReduceMax(TensorInt, TensorInt, ReadOnlySpan<Int32>, Boolean)
Reduces an input tensor along the given axes using the ReduceMean operation: f(x1, x2 ... xn) = max(x1, x2, ... , xn).
Declaration
public override void ReduceMax(TensorInt X, TensorInt O, ReadOnlySpan<int> axes, bool keepdim)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | X | The input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
| ReadOnlySpan<Int32> | axes | The axes along which to reduce. |
| Boolean | keepdim | Whether to keep the reduced axes in the output tensor. |
Overrides
ReduceMean(TensorFloat, TensorFloat, ReadOnlySpan<Int32>, Boolean)
Reduces an input tensor along the given axes using the ReduceMean operation: f(x1, x2 ... xn) = (x1 + x2 + ... + xn) / n.
Declaration
public override void ReduceMean(TensorFloat X, TensorFloat O, ReadOnlySpan<int> axes, bool keepdim)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| ReadOnlySpan<Int32> | axes | The axes along which to reduce. |
| Boolean | keepdim | Whether to keep the reduced axes in the output tensor. |
Overrides
ReduceMin(TensorFloat, TensorFloat, ReadOnlySpan<Int32>, Boolean)
Reduces an input tensor along the given axes using the ReduceMin operation: f(x1, x2 ... xn) = min(x1, x2, ... , xn).
Declaration
public override void ReduceMin(TensorFloat X, TensorFloat O, ReadOnlySpan<int> axes, bool keepdim)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| ReadOnlySpan<Int32> | axes | The axes along which to reduce. |
| Boolean | keepdim | Whether to keep the reduced axes in the output tensor. |
Overrides
ReduceMin(TensorInt, TensorInt, ReadOnlySpan<Int32>, Boolean)
Reduces an input tensor along the given axes using the ReduceMin operation: f(x1, x2 ... xn) = min(x1, x2, ... , xn).
Declaration
public override void ReduceMin(TensorInt X, TensorInt O, ReadOnlySpan<int> axes, bool keepdim)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | X | The input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
| ReadOnlySpan<Int32> | axes | The axes along which to reduce. |
| Boolean | keepdim | Whether to keep the reduced axes in the output tensor. |
Overrides
ReduceProd(TensorFloat, TensorFloat, ReadOnlySpan<Int32>, Boolean)
Reduces an input tensor along the given axes using the ReduceProd operation: f(x1, x2 ... xn) = x1 * x2 * ... * xn.
Declaration
public override void ReduceProd(TensorFloat X, TensorFloat O, ReadOnlySpan<int> axes, bool keepdim)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| ReadOnlySpan<Int32> | axes | The axes along which to reduce. |
| Boolean | keepdim | Whether to keep the reduced axes in the output tensor. |
Overrides
ReduceProd(TensorInt, TensorInt, ReadOnlySpan<Int32>, Boolean)
Reduces an input tensor along the given axes using the ReduceProd operation: f(x1, x2 ... xn) = x1 * x2 * ... * xn.
Declaration
public override void ReduceProd(TensorInt X, TensorInt O, ReadOnlySpan<int> axes, bool keepdim)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | X | The input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
| ReadOnlySpan<Int32> | axes | The axes along which to reduce. |
| Boolean | keepdim | Whether to keep the reduced axes in the output tensor. |
Overrides
ReduceSum(TensorFloat, TensorFloat, ReadOnlySpan<Int32>, Boolean)
Reduces an input tensor along the given axes using the ReduceSum operation: f(x1, x2 ... xn) = x1 + x2 + ... + xn.
Declaration
public override void ReduceSum(TensorFloat X, TensorFloat O, ReadOnlySpan<int> axes, bool keepdim)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| ReadOnlySpan<Int32> | axes | The axes along which to reduce. |
| Boolean | keepdim | Whether to keep the reduced axes in the output tensor. |
Overrides
ReduceSum(TensorInt, TensorInt, ReadOnlySpan<Int32>, Boolean)
Reduces an input tensor along the given axes using the ReduceSum operation: f(x1, x2 ... xn) = x1 + x2 + ... + xn.
Declaration
public override void ReduceSum(TensorInt X, TensorInt O, ReadOnlySpan<int> axes, bool keepdim)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | X | The input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
| ReadOnlySpan<Int32> | axes | The axes along which to reduce. |
| Boolean | keepdim | Whether to keep the reduced axes in the output tensor. |
Overrides
ReduceSumSquare(TensorFloat, TensorFloat, ReadOnlySpan<Int32>, Boolean)
Reduces an input tensor along the given axes using the ReduceSumSquare operation: f(x1, x2 ... xn) = x1² + x2² + ... + xn².
Declaration
public override void ReduceSumSquare(TensorFloat X, TensorFloat O, ReadOnlySpan<int> axes, bool keepdim)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| ReadOnlySpan<Int32> | axes | The axes along which to reduce. |
| Boolean | keepdim | Whether to keep the reduced axes in the output tensor. |
Overrides
ReduceSumSquare(TensorInt, TensorInt, ReadOnlySpan<Int32>, Boolean)
Reduces an input tensor along the given axes using the ReduceSumSquare operation: f(x1, x2 ... xn) = x1² + x2² + ... + xn².
Declaration
public override void ReduceSumSquare(TensorInt X, TensorInt O, ReadOnlySpan<int> axes, bool keepdim)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | X | The input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
| ReadOnlySpan<Int32> | axes | The axes along which to reduce. |
| Boolean | keepdim | Whether to keep the reduced axes in the output tensor. |
Overrides
Relu(TensorFloat, TensorFloat)
Computes an output tensor by applying the element-wise Relu activation function: f(x) = max(0, x).
Declaration
public override void Relu(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
Relu6(TensorFloat, TensorFloat)
Computes an output tensor by applying the element-wise Relu6 activation function: f(x) = clamp(x, 0, 6).
Declaration
public override void Relu6(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
Reshape(Tensor, Tensor)
Calculates an output tensor by copying the data from the input tensor and using a given shape. The data from the input tensor is unchanged.
Declaration
public override void Reshape(Tensor X, Tensor O)
Parameters
| Type | Name | Description |
|---|---|---|
| Tensor | X | The input tensor. |
| Tensor | O | The output tensor to be computed and filled. |
Overrides
Resize(TensorFloat, TensorFloat, ReadOnlySpan<Single>, InterpolationMode, NearestMode, CoordTransformMode)
Calculates an output tensor by resampling the input tensor along the spatial dimensions with given scales.
Declaration
public override void Resize(TensorFloat X, TensorFloat O, ReadOnlySpan<float> scale, InterpolationMode interpolationMode, NearestMode nearestMode, CoordTransformMode coordTransformMode)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| ReadOnlySpan<Single> | scale | The factor to scale each dimension by. |
| InterpolationMode | interpolationMode | The |
| NearestMode | nearestMode | The |
| CoordTransformMode | coordTransformMode | The |
Overrides
RoiAlign(TensorFloat, TensorFloat, TensorInt, TensorFloat, RoiPoolingMode, Int32, Int32, Int32, Single)
Calculates an output tensor by pooling the input tensor across each region of interest given by the rois tensor.
Declaration
public override void RoiAlign(TensorFloat X, TensorFloat rois, TensorInt indices, TensorFloat O, RoiPoolingMode mode, int outputHeight, int outputWidth, int samplingRatio, float spatialScale)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | rois | The region of interest input tensor. |
| TensorInt | indices | The indices input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| RoiPoolingMode | mode | The pooling mode of the operation as an |
| Int32 | outputHeight | The height of the output tensor. |
| Int32 | outputWidth | The width of the output tensor. |
| Int32 | samplingRatio | The number of sampling points in the interpolation grid used to compute the output value of each pooled output bin. |
| Single | spatialScale | The multiplicative spatial scale factor used to translate coordinates from their input spatial scale to the scale used when pooling. |
Overrides
Round(TensorFloat, TensorFloat)
Computes an output tensor by applying the element-wise Round math function: f(x) = round(x).
If the fractional part is equal to 0.5, rounds to the nearest even integer.
Declaration
public override void Round(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
ScalarMad(TensorFloat, TensorFloat, Single, Single)
Performs an element-wise Mad math operation: multiplies and adds bias to a tensor: f(T, s, b) = s * T + b.
Declaration
public override void ScalarMad(TensorFloat X, TensorFloat O, float s, float b)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| Single | s | Input scalar for multiplication. |
| Single | b | Input bias for addition. |
Overrides
ScaleBias(TensorFloat, TensorFloat, TensorFloat, TensorFloat)
Computes the output tensor with an element-wise ScaleBias function: f(x, s, b) = x * s + b.
Declaration
public override void ScaleBias(TensorFloat X, TensorFloat S, TensorFloat B, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | S | The scale tensor. |
| TensorFloat | B | The bias tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
ScatterElements(Tensor, TensorInt, Tensor, Tensor, Int32, ScatterReductionMode)
Copies the input tensor and updates values at indexes specified by the indices tensor with values specified by the updates tensor along a given axis.
ScatterElements updates the values depending on the reduction mode used.
Declaration
public override void ScatterElements(Tensor X, TensorInt indices, Tensor updates, Tensor O, int axis, ScatterReductionMode reduction)
Parameters
| Type | Name | Description |
|---|---|---|
| Tensor | X | The input tensor. |
| TensorInt | indices | The indices tensor. |
| Tensor | updates | The updates tensor. |
| Tensor | O | The output tensor to be computed and filled. |
| Int32 | axis | The axis on which to perform the scatter. |
| ScatterReductionMode | reduction | The reduction mode used to update the values as a |
Overrides
ScatterND(TensorFloat, TensorInt, TensorFloat, TensorFloat, ScatterReductionMode)
Copies the input tensor and updates values at indexes specified by the indices tensor with values specified by the updates tensor.
ScatterND updates the values depending on the reduction mode used.
Declaration
public override void ScatterND(TensorFloat X, TensorInt indices, TensorFloat updates, TensorFloat O, ScatterReductionMode reduction)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorInt | indices | The indices tensor. |
| TensorFloat | updates | The updates tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| ScatterReductionMode | reduction | The reduction mode used to update the values as a |
Overrides
ScatterND(TensorInt, TensorInt, TensorInt, TensorInt, ScatterReductionMode)
Copies the input tensor and updates values at indexes specified by the indices tensor with values specified by the updates tensor.
ScatterND updates the values depending on the reduction mode used.
Declaration
public override void ScatterND(TensorInt X, TensorInt indices, TensorInt updates, TensorInt O, ScatterReductionMode reduction)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | X | The input tensor. |
| TensorInt | indices | The indices tensor. |
| TensorInt | updates | The updates tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
| ScatterReductionMode | reduction | The reduction mode used to update the values as a |
Overrides
Selu(TensorFloat, TensorFloat, Single, Single)
Computes an output tensor by applying the element-wise Selu activation function: f(x) = gamma * x if x >= 0, otherwise f(x) = (alpha * e^x - alpha).
Declaration
public override void Selu(TensorFloat X, TensorFloat O, float alpha, float gamma)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| Single | alpha | The alpha value to use for the |
| Single | gamma | The alpha value to use for the |
Overrides
ShallowReshape(Tensor, TensorShape, AllocScope)
Declaration
public override Tensor ShallowReshape(Tensor X, TensorShape shape, AllocScope allocScope)
Parameters
| Type | Name | Description |
|---|---|---|
| Tensor | X | |
| TensorShape | shape | |
| AllocScope | allocScope |
Returns
| Type | Description |
|---|---|
| Tensor |
Overrides
Shrink(TensorFloat, TensorFloat, Single, Single)
Computes an output tensor by applying the element-wise Shrink activation function: f(x) = x + bias if x < lambd. f(x) = x - bias if x > lambd. Otherwise f(x) = 0.
Declaration
public override void Shrink(TensorFloat X, TensorFloat O, float bias, float lambd)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| Single | bias | The bias value to use for the |
| Single | lambd | The lambda value to use for the |
Overrides
Sigmoid(TensorFloat, TensorFloat)
Computes an output tensor by applying the element-wise Sigmoid activation function: f(x) = 1/(1 + e^(-x)).
Declaration
public override void Sigmoid(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
Sign(TensorFloat, TensorFloat)
Performs an element-wise Sign math operation: f(x) = 1 if x > 0. f(x) = -1 if x < 0. Otherwise f(x) = 0.
Declaration
public override void Sign(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
Sign(TensorInt, TensorInt)
Performs an element-wise Sign math operation: f(x) = 1 if x > 0. f(x) = -1 if x < 0. Otherwise f(x) = 0.
Declaration
public override void Sign(TensorInt X, TensorInt O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | X | The input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
Overrides
Sin(TensorFloat, TensorFloat)
Computes an output tensor by applying the element-wise Sin trigonometric function: f(x) = sin(x).
Declaration
public override void Sin(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
Sinh(TensorFloat, TensorFloat)
Computes an output tensor by applying the element-wise Sinh trigonometric function: f(x) = sinh(x).
Declaration
public override void Sinh(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
Slice(Tensor, Tensor, ReadOnlySpan<Int32>, ReadOnlySpan<Int32>, ReadOnlySpan<Int32>)
Calculates an output tensor by slicing the input tensor along given axes with given starts, ends, and steps.
Declaration
public override void Slice(Tensor X, Tensor O, ReadOnlySpan<int> starts, ReadOnlySpan<int> axes, ReadOnlySpan<int> steps)
Parameters
| Type | Name | Description |
|---|---|---|
| Tensor | X | The input tensor. |
| Tensor | O | The output tensor to be computed and filled. |
| ReadOnlySpan<Int32> | starts | The start index along each axis. |
| ReadOnlySpan<Int32> | axes | The axes along which to slice. If this is |
| ReadOnlySpan<Int32> | steps | The step values for slicing. If this is |
Overrides
Softmax(TensorFloat, TensorFloat, Int32)
Computes an output tensor by applying the Softmax activation function along an axis: f(x, axis) = exp(X) / ReduceSum(exp(X), axis).
Declaration
public override void Softmax(TensorFloat X, TensorFloat O, int axis)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| Int32 | axis | The axis along which to apply the |
Overrides
Softplus(TensorFloat, TensorFloat)
Computes an output tensor by applying the element-wise Softplus activation function: f(x) = ln(e^x + 1).
Declaration
public override void Softplus(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
Softsign(TensorFloat, TensorFloat)
Computes an output tensor by applying the element-wise Softsign activation function: f(x) = x/(|x| + 1).
Declaration
public override void Softsign(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
SpaceToDepth(TensorFloat, TensorFloat, Int32)
Computes the output tensor by permuting data from blocks of spatial data into depth.
Declaration
public override void SpaceToDepth(TensorFloat X, TensorFloat O, int blocksize)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| Int32 | blocksize | The size of the blocks to move the depth data into. |
Overrides
Split(Tensor, Tensor, Int32, Int32)
Calculates an output tensor by splitting the input tensor along a given axis between start and end.
Declaration
public override void Split(Tensor X, Tensor O, int axis, int start)
Parameters
| Type | Name | Description |
|---|---|---|
| Tensor | X | The input tensor. |
| Tensor | O | The output tensor to be computed and filled. |
| Int32 | axis | The axis along which to split the input tensor. |
| Int32 | start | The inclusive start value for the split. |
Overrides
Sqrt(TensorFloat, TensorFloat)
Computes an output tensor by applying the element-wise Sqrt math function: f(x) = sqrt(x).
Declaration
public override void Sqrt(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
Square(TensorFloat, TensorFloat)
Computes an output tensor by applying the element-wise Square math function: f(x) = x * x.
Declaration
public override void Square(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
Sub(TensorFloat, TensorFloat, TensorFloat)
Performs an element-wise Sub math operation: f(a, b) = a - b.
This supports numpy-style broadcasting of input tensors.
Declaration
public override void Sub(TensorFloat A, TensorFloat B, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | A | The first input tensor. |
| TensorFloat | B | The second input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
Sub(TensorInt, TensorInt, TensorInt)
Performs an element-wise Sub math operation: f(a, b) = a - b.
This supports numpy-style broadcasting of input tensors.
Declaration
public override void Sub(TensorInt A, TensorInt B, TensorInt O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | A | The first input tensor. |
| TensorInt | B | The second input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |
Overrides
Sum(TensorFloat[], TensorFloat)
Performs an element-wise Sum math operation: f(x1, x2 ... xn) = x1 + x2 ... xn.
This supports numpy-style broadcasting of input tensors.
Declaration
public override void Sum(TensorFloat[] inputs, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat[] | inputs | |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
Swish(TensorFloat, TensorFloat)
Computes an output tensor by applying the element-wise Swish activation function: f(x) = sigmoid(x) * x = x / (1 + e^{-x}).
Declaration
public override void Swish(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
Tan(TensorFloat, TensorFloat)
Computes an output tensor by applying the element-wise Tan trigonometric function: f(x) = tan(x).
Declaration
public override void Tan(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
Tanh(TensorFloat, TensorFloat)
Computes an output tensor by applying the element-wise Tanh activation function: f(x) = tanh(x).
Declaration
public override void Tanh(TensorFloat X, TensorFloat O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
Overrides
ThresholdedRelu(TensorFloat, TensorFloat, Single)
Computes an output tensor by applying the element-wise ThresholdedRelu activation function: f(x) = x if x > alpha, otherwise f(x) = 0.
Declaration
public override void ThresholdedRelu(TensorFloat X, TensorFloat O, float alpha)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorFloat | X | The input tensor. |
| TensorFloat | O | The output tensor to be computed and filled. |
| Single | alpha | The alpha value to use for the |
Overrides
Tile(Tensor, Tensor, ReadOnlySpan<Int32>)
Calculates an output tensor by repeating the input layer a given number of times along each axis.
Declaration
public override void Tile(Tensor X, Tensor O, ReadOnlySpan<int> repeats)
Parameters
| Type | Name | Description |
|---|---|---|
| Tensor | X | The input tensor. |
| Tensor | O | The output tensor to be computed and filled. |
| ReadOnlySpan<Int32> | repeats | The number of times to tile the input tensor along each axis. |
Overrides
Transpose(Tensor, Tensor)
Calculates an output tensor by reversing the dimensions of the input tensor.
Declaration
public override void Transpose(Tensor X, Tensor O)
Parameters
| Type | Name | Description |
|---|---|---|
| Tensor | X | The input tensor. |
| Tensor | O | The output tensor to be computed and filled. |
Overrides
Transpose(Tensor, Tensor, Int32[])
Calculates an output tensor by permuting the axes and data of the input tensor according to the given permutations.
Declaration
public override void Transpose(Tensor X, Tensor O, int[] permutations)
Parameters
| Type | Name | Description |
|---|---|---|
| Tensor | X | The input tensor. |
| Tensor | O | The output tensor to be computed and filled. |
| Int32[] | permutations | The axes to sample the output tensor from in the input tensor. |
Overrides
Tril(Tensor, Tensor, Int32)
Computes the output tensor by retaining the lower triangular values from an input matrix or matrix batch and setting the other values to zero.
Declaration
public override void Tril(Tensor X, Tensor O, int k)
Parameters
| Type | Name | Description |
|---|---|---|
| Tensor | X | The input tensor. |
| Tensor | O | The output tensor to be computed and filled. |
| Int32 | k | The offset from the diagonal to keep. |
Overrides
Triu(Tensor, Tensor, Int32)
Computes the output tensor by retaining the upper triangular values from an input matrix or matrix batch and setting the other values to zero.
Declaration
public override void Triu(Tensor X, Tensor O, int k)
Parameters
| Type | Name | Description |
|---|---|---|
| Tensor | X | The input tensor. |
| Tensor | O | The output tensor to be computed and filled. |
| Int32 | k | The offset from the diagonal to exclude. |
Overrides
Where(TensorInt, Tensor, Tensor, Tensor)
Performs an element-wise Where logical operation: f(condition, a, b) = a if condition is true, otherwise f(condition, a, b) = b.
Declaration
public override void Where(TensorInt C, Tensor A, Tensor B, Tensor O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | C | The condition tensor. |
| Tensor | A | The first input tensor. |
| Tensor | B | The second input tensor. |
| Tensor | O | The output tensor to be computed and filled. |
Overrides
Xor(TensorInt, TensorInt, TensorInt)
Performs an element-wise Xor logical operation: f(a) = a ^ b.
Declaration
public override void Xor(TensorInt A, TensorInt B, TensorInt O)
Parameters
| Type | Name | Description |
|---|---|---|
| TensorInt | A | The first input tensor. |
| TensorInt | B | The second input tensor. |
| TensorInt | O | The output tensor to be computed and filled. |