Class GPUPixelOps
Represents a GPUPixel backend ops.
Inherited Members
Namespace: Unity.Sentis
Syntax
public class GPUPixelOps : CPUOps, IOps, IDisposable
Constructors
GPUPixelOps(ITensorAllocator)
Initializes and returns an instance of GPUPixelOps
.
Declaration
public GPUPixelOps(ITensorAllocator allocator = null)
Parameters
Type | Name | Description |
---|---|---|
ITensorAllocator | allocator |
Properties
deviceType
Returns the DeviceType
for the ops.
Declaration
public override DeviceType deviceType { get; }
Property Value
Type | Description |
---|---|
DeviceType |
Overrides
Methods
Abs(TensorFloat)
Computes an output tensor by applying the element-wise Abs
math function: f(x) = f(x) = |x|.
Declaration
public override TensorFloat Abs(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Acos(TensorFloat)
Computes an output tensor by applying the element-wise Acos
trigonometric function: f(x) = acos(x).
Declaration
public override TensorFloat Acos(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Acosh(TensorFloat)
Computes an output tensor by applying the element-wise Acosh
trigonometric function: f(x) = acosh(x).
Declaration
public override TensorFloat Acosh(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Add(TensorFloat, TensorFloat)
Performs an element-wise Add
math operation: f(a, b) = a + b.
This supports numpy-style broadcasting of input tensors.
Declaration
public override TensorFloat Add(TensorFloat A, TensorFloat B)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | A | The first input tensor. |
TensorFloat | B | The second input tensor. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Asin(TensorFloat)
Computes an output tensor by applying the element-wise Asin
trigonometric function: f(x) = asin(x).
Declaration
public override TensorFloat Asin(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Asinh(TensorFloat)
Computes an output tensor by applying the element-wise Asinh
trigonometric function: f(x) = asinh(x).
Declaration
public override TensorFloat Asinh(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Atan(TensorFloat)
Computes an output tensor by applying the element-wise Atan
trigonometric function: f(x) = atan(x).
Declaration
public override TensorFloat Atan(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Atanh(TensorFloat)
Computes an output tensor by applying the element-wise Atanh
trigonometric function: f(x) = atanh(x).
Declaration
public override TensorFloat Atanh(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
AveragePool(TensorFloat, Int32[], Int32[], Int32[])
Calculates an output tensor by pooling the mean values of the input tensor across its spatial dimensions according to the given pool and stride values.
Declaration
public override TensorFloat AveragePool(TensorFloat X, int[] pool, int[] stride, int[] pad)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
Int32[] | pool | The size of the kernel along each spatial axis. |
Int32[] | stride | The stride along each spatial axis. |
Int32[] | pad | The lower and upper padding values for each spatial dimension. For example, [pad_left, pad_right] for 1D, or [pad_top, pad_bottom, pad_left, pad_right] for 2D. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Ceil(TensorFloat)
Computes an output tensor by applying the element-wise Ceil
math function: f(x) = ceil(x).
Declaration
public override TensorFloat Ceil(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Celu(TensorFloat, Single)
Computes an output tensor by applying the element-wise Celu
activation function: f(x) = max(0, x) + min(0, alpha * (exp(x / alpha) - 1)).
Declaration
public override TensorFloat Celu(TensorFloat X, float alpha)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | |
Single | alpha | The alpha value to use for the |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Clip(TensorFloat, Single, Single)
Computes an output tensor by applying the element-wise Clip
math function: f(x) = clamp(x, min, max).
Declaration
public override TensorFloat Clip(TensorFloat X, float min, float max)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | |
Single | min | The lower clip value. |
Single | max | The upper clip value. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Concat(Tensor[], Int32)
Calculates an output tensor by concatenating the input tensors along a given axis.
Declaration
public override Tensor Concat(Tensor[] tensors, int axis)
Parameters
Type | Name | Description |
---|---|---|
Tensor[] | tensors | The input tensors. |
Int32 | axis | The axis along which to concatenate the input tensors. |
Returns
Type | Description |
---|---|
Tensor | The computed output tensor. |
Overrides
ConstantOfShape(TensorShape, Single)
Generates a tensor with a given shape filled with a given value.
Declaration
public override TensorFloat ConstantOfShape(TensorShape X, float value)
Parameters
Type | Name | Description |
---|---|---|
TensorShape | X | The input tensor shape. |
Single | value | The fill value. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Conv(TensorFloat, TensorFloat, TensorFloat, Int32, Int32[], Int32[], Int32[], FusableActivation)
Applies a convolution filter to an input tensor.
Declaration
public override TensorFloat Conv(TensorFloat X, TensorFloat K, TensorFloat B, int groups, int[] stride, int[] pad, int[] dilation, FusableActivation fusedActivation)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
TensorFloat | K | The filter tensor. |
TensorFloat | B | The optional bias tensor. |
Int32 | groups | The number of groups that input channels and output channels are divided into. |
Int32[] | stride | The optional stride value for each spatial dimension of the filter. |
Int32[] | pad | The optional lower and upper padding values for each spatial dimension of the filter. |
Int32[] | dilation | The optional dilation value of each spatial dimension of the filter. |
FusableActivation | fusedActivation | The fused activation type to apply after the convolution. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Conv2DTrans(TensorFloat, TensorFloat, TensorFloat, Int32[], Int32[], Int32[], FusableActivation)
Applies a transpose convolution filter to an input tensor.
Declaration
public override TensorFloat Conv2DTrans(TensorFloat X, TensorFloat K, TensorFloat B, int[] stride, int[] pad, int[] outputAdjustment, FusableActivation fusedActivation)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
TensorFloat | K | The filter tensor. |
TensorFloat | B | The optional bias tensor. |
Int32[] | stride | The optional stride value for each spatial dimension of the filter. |
Int32[] | pad | The optional lower and upper padding values for each spatial dimension of the filter. |
Int32[] | outputAdjustment | The output padding value for each spatial dimension in the filter. |
FusableActivation | fusedActivation | The fused activation type to apply after the convolution. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Copy(Tensor)
Creates a copy of a given input tensor with the same shape and values.
Declaration
public override Tensor Copy(Tensor X)
Parameters
Type | Name | Description |
---|---|---|
Tensor | X |
Returns
Type | Description |
---|---|
Tensor | The computed output tensor. |
Overrides
Cos(TensorFloat)
Computes an output tensor by applying the element-wise Cos
trigonometric function: f(x) = cos(x).
Declaration
public override TensorFloat Cos(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Cosh(TensorFloat)
Computes an output tensor by applying the element-wise Cosh
trigonometric function: f(x) = cosh(x).
Declaration
public override TensorFloat Cosh(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Dense(TensorFloat, TensorFloat, TensorFloat, FusableActivation)
Performs a matrix multiplication operation: f(x, w, b) = X x W + B.
This supports numpy-style broadcasting of input tensors.
Declaration
public override TensorFloat Dense(TensorFloat X, TensorFloat W, TensorFloat B, FusableActivation fusedActivation)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
TensorFloat | W | The weights tensor. |
TensorFloat | B | The bias tensor. |
FusableActivation | fusedActivation | The fused activation to apply to the output tensor after the dense operation. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
DepthToSpace(TensorFloat, Int32, DepthToSpaceMode)
Computes the output tensor by permuting data from depth into blocks of spatial data.
Declaration
public override TensorFloat DepthToSpace(TensorFloat X, int blocksize, DepthToSpaceMode mode)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
Int32 | blocksize | The size of the blocks to move the depth data into. |
DepthToSpaceMode | mode | The ordering of the data in the output tensor as a |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Div(TensorFloat, TensorFloat)
Performs an element-wise Div
math operation: f(a, b) = a / b.
This supports numpy-style broadcasting of input tensors.
Declaration
public override TensorFloat Div(TensorFloat A, TensorFloat B)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | A | The first input tensor. |
TensorFloat | B | The second input tensor. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Elu(TensorFloat, Single)
Computes an output tensor by applying the element-wise Elu
activation function: f(x) = x if x >= 0, otherwise f(x) = alpha * (e^x - 1).
Declaration
public override TensorFloat Elu(TensorFloat X, float alpha)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
Single | alpha | The alpha value to use for the |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Erf(TensorFloat)
Computes an output tensor by applying the element-wise Erf
activation function: f(x) = erf(x).
Declaration
public override TensorFloat Erf(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Exp(TensorFloat)
Computes an output tensor by applying the element-wise Exp
math function: f(x) = exp(x).
Declaration
public override TensorFloat Exp(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Expand(Tensor, TensorShape)
Calculates an output tensor by broadcasting the input tensor into a given shape.
Declaration
public override Tensor Expand(Tensor X, TensorShape newShape)
Parameters
Type | Name | Description |
---|---|---|
Tensor | X | The input tensor. |
TensorShape | newShape |
Returns
Type | Description |
---|---|
Tensor | The computed output tensor. |
Overrides
Floor(TensorFloat)
Computes an output tensor by applying the element-wise Floor
math function: f(x) = floor(x).
Declaration
public override TensorFloat Floor(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
FMod(TensorFloat, TensorFloat)
Performs an element-wise Mod
math operation: f(a, b) = a % b.
The sign of the remainder is the same as the sign of the dividend, as in C#.
This supports numpy-style broadcasting of input tensors.
Declaration
public override TensorFloat FMod(TensorFloat A, TensorFloat B)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | A | The first input tensor. |
TensorFloat | B | The second input tensor. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Gelu(TensorFloat)
Computes an output tensor by applying the element-wise Gelu
activation function: f(x) = x / 2 * (1 + erf(x / sqrt(2))).
Declaration
public override TensorFloat Gelu(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
GlobalAveragePool(TensorFloat)
Calculates an output tensor by pooling the mean values of the input tensor across all of its spatial dimensions. The spatial dimensions of the output are size 1.
Declaration
public override TensorFloat GlobalAveragePool(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
GlobalMaxPool(TensorFloat)
Calculates an output tensor by pooling the maximum values of the input tensor across all of its spatial dimensions. The spatial dimensions of the output are size 1.
Declaration
public override TensorFloat GlobalMaxPool(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
HardSigmoid(TensorFloat, Single, Single)
Computes an output tensor by applying the element-wise HardSigmoid
activation function: f(x) = clamp(alpha * x + beta, 0, 1).
Declaration
public override TensorFloat HardSigmoid(TensorFloat X, float alpha, float beta)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | |
Single | alpha | The alpha value to use for the |
Single | beta | The beta value to use for the |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
HardSwish(TensorFloat)
Computes an output tensor by applying the element-wise HardSwish
activation function: f(x) = x * max(0, min(1, 1/6 * x + 0.5)).
Declaration
public override TensorFloat HardSwish(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
LeakyRelu(TensorFloat, Single)
Computes an output tensor by applying the element-wise LeakyRelu
activation function: f(x) = x if x >= 0, otherwise f(x) = alpha * x.
Declaration
public override TensorFloat LeakyRelu(TensorFloat X, float alpha)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | |
Single | alpha | The alpha value to use for the |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Log(TensorFloat)
Computes an output tensor by applying the element-wise Log
math function: f(x) = log(x).
Declaration
public override TensorFloat Log(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
LogSoftmax(TensorFloat, Int32)
Computes an output tensor by applying the LogSoftmax
activation function along an axis: f(x, axis) = log(Softmax(x, axis)).
Declaration
public override TensorFloat LogSoftmax(TensorFloat X, int axis)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
Int32 | axis | The axis along which to apply the |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
MatMul(TensorFloat, TensorFloat)
Performs a multi-dimensional matrix multiplication operation: f(a, b) = a x b.
Declaration
public override TensorFloat MatMul(TensorFloat X, TensorFloat Y)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The first input tensor. |
TensorFloat | Y | The second input tensor. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
MatMul2D(TensorFloat, Boolean, TensorFloat, Boolean)
Performs a matrix multiplication operation with optional transposes: f(a, b) = a' x b'.
Declaration
public override TensorFloat MatMul2D(TensorFloat X, bool xTranspose, TensorFloat Y, bool yTranspose)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The first input tensor. |
Boolean | xTranspose | Whether to transpose the first input tensor before performing the matrix multiplication. |
TensorFloat | Y | |
Boolean | yTranspose | Whether to transpose the second input tensor before performing the matrix multiplication. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Max(TensorFloat[])
Performs an element-wise Max
math operation: f(x1, x2 ... xn) = max(x1, x2 ... xn).
This supports numpy-style broadcasting of input tensors.
Declaration
public override TensorFloat Max(TensorFloat[] tensors)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat[] | tensors | The input tensors. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
MaxPool(TensorFloat, Int32[], Int32[], Int32[])
Calculates an output tensor by pooling the maximum values of the input tensor across its spatial dimensions according to the given pool and stride values.
Declaration
public override TensorFloat MaxPool(TensorFloat X, int[] pool, int[] stride, int[] pad)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
Int32[] | pool | The size of the kernel along each spatial axis. |
Int32[] | stride | The stride along each spatial axis. |
Int32[] | pad | The lower and upper padding values for each spatial dimension. For example, [pad_left, pad_right] for 1D, or [pad_top, pad_bottom, pad_left, pad_right] for 2D. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Mean(TensorFloat[])
Performs an element-wise Mean
math operation: f(x1, x2 ... xn) = (x1 + x2 ... xn) / n.
This supports numpy-style broadcasting of input tensors.
Declaration
public override TensorFloat Mean(TensorFloat[] tensors)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat[] | tensors | The input tensors. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
MemSet(Tensor, Int32, Int32, Int32)
Set values of O in indices [offset0, offsetO + length] to value
Declaration
protected override void MemSet(Tensor O, int value, int length = -1, int offsetO = 0)
Parameters
Type | Name | Description |
---|---|---|
Tensor | O | |
Int32 | value | |
Int32 | length | |
Int32 | offsetO |
Overrides
Min(TensorFloat[])
Performs an element-wise Min
math operation: f(x1, x2 ... xn) = min(x1, x2 ... xn).
This supports numpy-style broadcasting of input tensors.
Declaration
public override TensorFloat Min(TensorFloat[] tensors)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat[] | tensors | The input tensors. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Mul(TensorFloat, TensorFloat)
Performs an element-wise Mul
math operation: f(a, b) = a * b.
This supports numpy-style broadcasting of input tensors.
Declaration
public override TensorFloat Mul(TensorFloat A, TensorFloat B)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | A | The first input tensor. |
TensorFloat | B | The second input tensor. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Neg(TensorFloat)
Computes an output tensor by applying the element-wise Neg
math function: f(x) = -x.
Declaration
public override TensorFloat Neg(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Pad(TensorFloat, Int32[], PadMode, Single)
Calculates the output tensor by adding padding to the input tensor according to the given padding values and mode.
Declaration
public override TensorFloat Pad(TensorFloat X, int[] pad, PadMode padMode, float constant)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
Int32[] | pad | The lower and upper padding values for each dimension. |
PadMode | padMode | The |
Single | constant | The constant value to fill with when using |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Pow(TensorFloat, TensorFloat)
Performs an element-wise Pow
math operation: f(a, b) = pow(a, b).
This supports numpy-style broadcasting of input tensors.
Declaration
public override TensorFloat Pow(TensorFloat A, TensorFloat B)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | A | The first input tensor. |
TensorFloat | B | The second input tensor. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Reciprocal(TensorFloat)
Computes an output tensor by applying the element-wise Reciprocal
math function: f(x) = 1 / x.
Declaration
public override TensorFloat Reciprocal(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
ReduceL1(TensorFloat, Int32[], Boolean)
Reduces an input tensor along the given axes using the ReduceL1
operation: f(x1, x2 ... xn) = |x1| + |x2| + ... + |xn|.
Declaration
public override TensorFloat ReduceL1(TensorFloat X, int[] axes, bool keepdim)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
Int32[] | axes | The axes along which to reduce. |
Boolean | keepdim | Whether to keep the reduced axes in the output tensor. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
ReduceL2(TensorFloat, Int32[], Boolean)
Reduces an input tensor along the given axes using the ReduceL2
operation: f(x1, x2 ... xn) = sqrt(x1² + x2² + ... + xn²).
Declaration
public override TensorFloat ReduceL2(TensorFloat X, int[] axes, bool keepdim)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
Int32[] | axes | The axes along which to reduce. |
Boolean | keepdim | Whether to keep the reduced axes in the output tensor. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
ReduceLogSum(TensorFloat, Int32[], Boolean)
Reduces an input tensor along the given axes using the ReduceLogSum
operation: f(x1, x2 ... xn) = log(x1 + x2 + ... + xn).
Declaration
public override TensorFloat ReduceLogSum(TensorFloat X, int[] axes, bool keepdim)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
Int32[] | axes | The axes along which to reduce. |
Boolean | keepdim | Whether to keep the reduced axes in the output tensor. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
ReduceLogSumExp(TensorFloat, Int32[], Boolean)
Reduces an input tensor along the given axes using the ReduceLogSumExp
operation: f(x1, x2 ... xn) = log(e^x1 + e^x2 + ... + e^xn).
Declaration
public override TensorFloat ReduceLogSumExp(TensorFloat X, int[] axes, bool keepdim)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
Int32[] | axes | The axes along which to reduce. |
Boolean | keepdim | Whether to keep the reduced axes in the output tensor. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
ReduceMax(TensorFloat, Int32[], Boolean)
Reduces an input tensor along the given axes using the ReduceMax
operation: f(x1, x2 ... xn) = max(x1, x2, ... , xn).
Declaration
public override TensorFloat ReduceMax(TensorFloat X, int[] axes, bool keepdim)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
Int32[] | axes | The axes along which to reduce. |
Boolean | keepdim | Whether to keep the reduced axes in the output tensor. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
ReduceMean(TensorFloat, Int32[], Boolean)
Reduces an input tensor along the given axes using the ReduceMean
operation: f(x1, x2 ... xn) = (x1 + x2 + ... + xn) / n.
Declaration
public override TensorFloat ReduceMean(TensorFloat X, int[] axes, bool keepdim)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
Int32[] | axes | The axes along which to reduce. |
Boolean | keepdim | Whether to keep the reduced axes in the output tensor. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
ReduceMin(TensorFloat, Int32[], Boolean)
Reduces an input tensor along the given axes using the ReduceMin
operation: f(x1, x2 ... xn) = min(x1, x2, ... , xn).
Declaration
public override TensorFloat ReduceMin(TensorFloat X, int[] axes, bool keepdim)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
Int32[] | axes | The axes along which to reduce. |
Boolean | keepdim | Whether to keep the reduced axes in the output tensor. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
ReduceProd(TensorFloat, Int32[], Boolean)
Reduces an input tensor along the given axes using the ReduceProd
operation: f(x1, x2 ... xn) = x1 * x2 * ... * xn.
Declaration
public override TensorFloat ReduceProd(TensorFloat X, int[] axes, bool keepdim)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
Int32[] | axes | The axes along which to reduce. |
Boolean | keepdim | Whether to keep the reduced axes in the output tensor. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
ReduceSum(TensorFloat, Int32[], Boolean)
Reduces an input tensor along the given axes using the ReduceSum
operation: f(x1, x2 ... xn) = x1 + x2 + ... + xn.
Declaration
public override TensorFloat ReduceSum(TensorFloat X, int[] axes, bool keepdim)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
Int32[] | axes | The axes along which to reduce. |
Boolean | keepdim | Whether to keep the reduced axes in the output tensor. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
ReduceSumSquare(TensorFloat, Int32[], Boolean)
Reduces an input tensor along the given axes using the ReduceSumSquare
operation: f(x1, x2 ... xn) = x1² + x2² + ... + xn².
Declaration
public override TensorFloat ReduceSumSquare(TensorFloat X, int[] axes, bool keepdim)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
Int32[] | axes | The axes along which to reduce. |
Boolean | keepdim | Whether to keep the reduced axes in the output tensor. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Relu(TensorFloat)
Computes an output tensor by applying the element-wise Relu
activation function: f(x) = max(0, x).
Declaration
public override TensorFloat Relu(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Relu6(TensorFloat)
Computes an output tensor by applying the element-wise Relu6
activation function: f(x) = clamp(x, 0, 6).
Declaration
public override TensorFloat Relu6(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Reshape(Tensor, TensorShape)
Calculates an output tensor by copying the data from the input tensor and using a given shape. The data from the input tensor is unchanged.
Declaration
public override Tensor Reshape(Tensor X, TensorShape newShape)
Parameters
Type | Name | Description |
---|---|---|
Tensor | X | The input tensor. |
TensorShape | newShape |
Returns
Type | Description |
---|---|
Tensor | The computed output tensor. |
Overrides
Resize(TensorFloat, Single[], InterpolationMode, NearestMode, CoordTransformMode)
Calculates an output tensor by resampling the input tensor along the spatial dimensions with given scales.
Declaration
public override TensorFloat Resize(TensorFloat X, float[] scale, InterpolationMode interpolationMode, NearestMode nearestMode = NearestMode.RoundPreferFloor, CoordTransformMode coordTransformMode = CoordTransformMode.HalfPixel)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
Single[] | scale | The factor to scale each dimension by. |
InterpolationMode | interpolationMode | The |
NearestMode | nearestMode | The |
CoordTransformMode | coordTransformMode | The |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Round(TensorFloat)
Computes an output tensor by applying the element-wise Round
math function: f(x) = round(x).
If the fractional part is equal to 0.5, rounds to the nearest even integer.
Declaration
public override TensorFloat Round(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
ScaleBias(TensorFloat, TensorFloat, TensorFloat)
Computes the output tensor with an element-wise ScaleBias
function: f(x, s, b) = x * s + b.
Declaration
public override TensorFloat ScaleBias(TensorFloat X, TensorFloat S, TensorFloat B)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
TensorFloat | S | The scale tensor. |
TensorFloat | B | The bias tensor. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Selu(TensorFloat, Single, Single)
Computes an output tensor by applying the element-wise Selu
activation function: f(x) = gamma * x if x >= 0, otherwise f(x) = (alpha * e^x - alpha).
Declaration
public override TensorFloat Selu(TensorFloat X, float alpha, float gamma)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | |
Single | alpha | The alpha value to use for the |
Single | gamma | The alpha value to use for the |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Sigmoid(TensorFloat)
Computes an output tensor by applying the element-wise Sigmoid
activation function: f(x) = 1/(1 + e^(-x)).
Declaration
public override TensorFloat Sigmoid(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Sin(TensorFloat)
Computes an output tensor by applying the element-wise Sin
trigonometric function: f(x) = sin(x).
Declaration
public override TensorFloat Sin(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Sinh(TensorFloat)
Computes an output tensor by applying the element-wise Sinh
trigonometric function: f(x) = sinh(x).
Declaration
public override TensorFloat Sinh(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Slice(Tensor, Int32[], Int32[], Int32[], Int32[])
Calculates an output tensor by slicing the input tensor along given axes with given starts, ends, and steps.
Declaration
public override Tensor Slice(Tensor X, int[] starts, int[] ends, int[] axes, int[] steps)
Parameters
Type | Name | Description |
---|---|---|
Tensor | X | The input tensor. |
Int32[] | starts | The start index along each axis. |
Int32[] | ends | The end index along each axis. |
Int32[] | axes | The axes along which to slice. If this is |
Int32[] | steps | The step values for slicing. If this is |
Returns
Type | Description |
---|---|
Tensor | The computed output tensor. |
Overrides
Softmax(TensorFloat, Int32)
Computes an output tensor by applying the Softmax
activation function along an axis: f(x, axis) = exp(X) / ReduceSum(exp(X), axis).
Declaration
public override TensorFloat Softmax(TensorFloat X, int axis)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
Int32 | axis | The axis along which to apply the |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Softplus(TensorFloat)
Computes an output tensor by applying the element-wise Softplus
activation function: f(x) = ln(e^x + 1).
Declaration
public override TensorFloat Softplus(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Softsign(TensorFloat)
Computes an output tensor by applying the element-wise Softsign
activation function: f(x) = x/(|x| + 1).
Declaration
public override TensorFloat Softsign(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
SpaceToDepth(TensorFloat, Int32)
Computes the output tensor by permuting data from blocks of spatial data into depth.
Declaration
public override TensorFloat SpaceToDepth(TensorFloat X, int blocksize)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | |
Int32 | blocksize | The size of the blocks to move the depth data into. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Split(Tensor, Int32, Int32, Int32)
Calculates an output tensor by splitting the input tensor along a given axis between start and end.
Declaration
public override Tensor Split(Tensor X, int axis, int start, int end)
Parameters
Type | Name | Description |
---|---|---|
Tensor | X | The input tensor. |
Int32 | axis | The axis along which to split the input tensor. |
Int32 | start | The inclusive start value for the split. |
Int32 | end | The exclusive end value for the split. |
Returns
Type | Description |
---|---|
Tensor | The computed output tensor. |
Overrides
Sqrt(TensorFloat)
Computes an output tensor by applying the element-wise Sqrt
math function: f(x) = sqrt(x).
Declaration
public override TensorFloat Sqrt(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Square(TensorFloat)
Computes an output tensor by applying the element-wise Square
math function: f(x) = x * x.
Declaration
public override TensorFloat Square(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Sub(TensorFloat, TensorFloat)
Performs an element-wise Sub
math operation: f(a, b) = a - b.
This supports numpy-style broadcasting of input tensors.
Declaration
public override TensorFloat Sub(TensorFloat A, TensorFloat B)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | A | The first input tensor. |
TensorFloat | B | The second input tensor. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Sum(TensorFloat[])
Performs an element-wise Sum
math operation: f(x1, x2 ... xn) = x1 + x2 ... xn.
This supports numpy-style broadcasting of input tensors.
Declaration
public override TensorFloat Sum(TensorFloat[] tensors)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat[] | tensors | The input tensors. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Swish(TensorFloat)
Computes an output tensor by applying the element-wise Swish
activation function: f(x) = sigmoid(x) * x = x / (1 + e^{-x}).
Declaration
public override TensorFloat Swish(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Tan(TensorFloat)
Computes an output tensor by applying the element-wise Tan
trigonometric function: f(x) = tan(x).
Declaration
public override TensorFloat Tan(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Tanh(TensorFloat)
Computes an output tensor by applying the element-wise Tanh
activation function: f(x) = tanh(x).
Declaration
public override TensorFloat Tanh(TensorFloat X)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | The input tensor. |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
ThresholdedRelu(TensorFloat, Single)
Computes an output tensor by applying the element-wise ThresholdedRelu
activation function: f(x) = x if x > alpha, otherwise f(x) = 0.
Declaration
public override TensorFloat ThresholdedRelu(TensorFloat X, float alpha)
Parameters
Type | Name | Description |
---|---|---|
TensorFloat | X | |
Single | alpha | The alpha value to use for the |
Returns
Type | Description |
---|---|
TensorFloat | The computed output tensor. |
Overrides
Transpose(Tensor, Int32[])
Calculates an output tensor by permuting the axes and data of the input tensor according to the given permutations.
Declaration
public override Tensor Transpose(Tensor X, int[] permutations)
Parameters
Type | Name | Description |
---|---|---|
Tensor | X | |
Int32[] | permutations | The axes to sample the output tensor from in the input tensor. |
Returns
Type | Description |
---|---|
Tensor | The computed output tensor. |