docs.unity3d.com
Search Results for

    Show / Hide Table of Contents

    Class ReferenceCPUOps

    Reference CPU implementation of IOps

    Inheritance
    object
    ReferenceCPUOps
    PixelShaderOps
    ReferenceComputeOps
    UnsafeArrayCPUOps
    Implements
    IOps
    IOpsStatistics
    Inherited Members
    object.ToString()
    object.Equals(object)
    object.Equals(object, object)
    object.ReferenceEquals(object, object)
    object.GetHashCode()
    object.GetType()
    object.MemberwiseClone()
    Namespace: Unity.Barracuda
    Assembly: solution.dll
    Syntax
    public class ReferenceCPUOps : IOps, IOpsStatistics

    Constructors

    ReferenceCPUOps(ITensorAllocator)

    Create ReferenceCPUOps

    Declaration
    public ReferenceCPUOps(ITensorAllocator allocator = null)
    Parameters
    Type Name Description
    ITensorAllocator allocator

    allocator

    Methods

    Abs(Tensor)

    Abs

    Declaration
    public virtual Tensor Abs(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Acos(Tensor)

    Acos

    Declaration
    public virtual Tensor Acos(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Acosh(Tensor)

    Acosh

    Declaration
    public virtual Tensor Acosh(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Add(Tensor[])

    Add tensors together

    Declaration
    public virtual Tensor Add(Tensor[] tensors)
    Parameters
    Type Name Description
    Tensor[] tensors

    input tensors

    Returns
    Type Description
    Tensor

    output Tensor

    ArgMax(Tensor, int)

    ArgMax

    Declaration
    public virtual Tensor ArgMax(Tensor X, int axis)
    Parameters
    Type Name Description
    Tensor X
    int axis

    axis

    Returns
    Type Description
    Tensor

    output Tensor

    ArgMin(Tensor, int)

    ArgMax

    Declaration
    public virtual Tensor ArgMin(Tensor X, int axis)
    Parameters
    Type Name Description
    Tensor X
    int axis

    axis

    Returns
    Type Description
    Tensor

    output Tensor

    Asin(Tensor)

    Asin

    Declaration
    public virtual Tensor Asin(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Asinh(Tensor)

    Asinh

    Declaration
    public virtual Tensor Asinh(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Atan(Tensor)

    Atan

    Declaration
    public virtual Tensor Atan(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Atanh(Tensor)

    Atanh

    Declaration
    public virtual Tensor Atanh(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    AvgPool2D(Tensor, int[], int[], int[])

    2D average pooling

    Declaration
    public virtual Tensor AvgPool2D(Tensor X, int[] pool, int[] stride, int[] pad)
    Parameters
    Type Name Description
    Tensor X
    int[] pool

    pooling

    int[] stride

    stride

    int[] pad

    padding

    Returns
    Type Description
    Tensor

    output Tensor

    Bernoulli(float)

    Bernoulli distribution

    Declaration
    protected float Bernoulli(float p)
    Parameters
    Type Name Description
    float p

    p

    Returns
    Type Description
    float

    random value

    Border2D(Tensor, int[], float)

    2D border padding

    Declaration
    public virtual Tensor Border2D(Tensor X, int[] pad, float value)
    Parameters
    Type Name Description
    Tensor X
    int[] pad

    padding

    float value
    Returns
    Type Description
    Tensor

    output Tensor

    Border3D(Tensor, int[], float)

    3D border padding

    Declaration
    public virtual Tensor Border3D(Tensor X, int[] pad, float value)
    Parameters
    Type Name Description
    Tensor X
    int[] pad

    padding

    float value
    Returns
    Type Description
    Tensor

    output Tensor

    Ceil(Tensor)

    Ceil

    Declaration
    public virtual Tensor Ceil(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Clip(Tensor, float, float)

    Clip

    Declaration
    public virtual Tensor Clip(Tensor X, float min, float max)
    Parameters
    Type Name Description
    Tensor X
    float min

    min value

    float max

    max value

    Returns
    Type Description
    Tensor

    output Tensor

    Concat(Tensor[], int)

    Concatenate tensors across axis

    Declaration
    public virtual Tensor Concat(Tensor[] tensors, int axis)
    Parameters
    Type Name Description
    Tensor[] tensors

    input tensors

    int axis

    axis

    Returns
    Type Description
    Tensor

    output Tensor

    ConstantOfShape(TensorShape, DataType, float)

    Creates a constant of shape input

    Declaration
    public virtual Tensor ConstantOfShape(TensorShape X, DataType type, float value = 0)
    Parameters
    Type Name Description
    TensorShape X

    input shape

    DataType type

    Tensor DataType

    float value

    value

    Returns
    Type Description
    Tensor

    output Tensor

    Conv2D(Tensor, Tensor, Tensor, int[], int[], FusedActivation)

    2D convolution

    Declaration
    public virtual Tensor Conv2D(Tensor X, Tensor K, Tensor B, int[] stride, int[] pad, Layer.FusedActivation fusedActivation)
    Parameters
    Type Name Description
    Tensor X
    Tensor K
    Tensor B
    int[] stride

    stride

    int[] pad

    padding

    Layer.FusedActivation fusedActivation

    fused activation type

    Returns
    Type Description
    Tensor

    output Tensor

    Conv2DTrans(Tensor, Tensor, Tensor, int[], int[], int[], FusedActivation)

    Transpose 2D convolution

    Declaration
    public virtual Tensor Conv2DTrans(Tensor X, Tensor K, Tensor B, int[] stride, int[] pad, int[] outputAdjustment, Layer.FusedActivation fusedActivation)
    Parameters
    Type Name Description
    Tensor X
    Tensor K
    Tensor B
    int[] stride

    stride

    int[] pad

    padding

    int[] outputAdjustment

    output adjustments

    Layer.FusedActivation fusedActivation

    fused activation type

    Returns
    Type Description
    Tensor

    output Tensor

    Conv3D(Tensor, Tensor, Tensor, int[], int[], FusedActivation)

    3D convolution

    Declaration
    public virtual Tensor Conv3D(Tensor X, Tensor K, Tensor B, int[] stride, int[] pad, Layer.FusedActivation fusedActivation)
    Parameters
    Type Name Description
    Tensor X
    Tensor K
    Tensor B
    int[] stride

    stride

    int[] pad

    padding

    Layer.FusedActivation fusedActivation

    fused activation type

    Returns
    Type Description
    Tensor

    output Tensor

    Copy(Tensor)

    Copy

    Declaration
    public virtual Tensor Copy(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    CopyAndReshape(Tensor, TensorShape)

    Copy and reshape Tensor

    Declaration
    protected virtual Tensor CopyAndReshape(Tensor X, TensorShape shape)
    Parameters
    Type Name Description
    Tensor X

    input

    TensorShape shape

    shape

    Returns
    Type Description
    Tensor

    output Tensor

    Cos(Tensor)

    Cos

    Declaration
    public virtual Tensor Cos(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Cosh(Tensor)

    Cosh

    Declaration
    public virtual Tensor Cosh(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Dense(Tensor, Tensor, Tensor, FusedActivation)

    Dense layer (matrix multiplication) o = x ⨯ w + b

    Declaration
    public virtual Tensor Dense(Tensor X, Tensor W, Tensor B, Layer.FusedActivation fusedActivation)
    Parameters
    Type Name Description
    Tensor X
    Tensor W
    Tensor B
    Layer.FusedActivation fusedActivation

    fused activation type

    Returns
    Type Description
    Tensor

    output Tensor

    Dense3(Tensor, Tensor, Tensor)

    rank3 Dense layer (matrix multiplication) o = x ⨯ w + b O: N,,W,C / X: N,,W,C / W:N,,,C / B:N,,,_

    Declaration
    public virtual Tensor Dense3(Tensor X, Tensor W, Tensor B)
    Parameters
    Type Name Description
    Tensor X
    Tensor W
    Tensor B
    Returns
    Type Description
    Tensor

    output Tensor

    DepthToSpace(Tensor, int[], DepthToSpaceMode)

    Depth to space

    Declaration
    public virtual Tensor DepthToSpace(Tensor X, int[] blocksize, Layer.DepthToSpaceMode mode)
    Parameters
    Type Name Description
    Tensor X
    int[] blocksize
    Layer.DepthToSpaceMode mode

    mode

    Returns
    Type Description
    Tensor

    output Tensor

    DepthwiseConv2D(Tensor, Tensor, Tensor, int[], int[], FusedActivation)

    Depthwise 2D convolution

    Declaration
    public virtual Tensor DepthwiseConv2D(Tensor X, Tensor K, Tensor B, int[] stride, int[] pad, Layer.FusedActivation fusedActivation)
    Parameters
    Type Name Description
    Tensor X
    Tensor K
    Tensor B
    int[] stride

    stride

    int[] pad

    padding

    Layer.FusedActivation fusedActivation

    fused activation type

    Returns
    Type Description
    Tensor

    output Tensor

    Div(Tensor[])

    Divide tensors o = tensors[0] / tensors[1] / ... / tensors[N-1]

    Declaration
    public virtual Tensor Div(Tensor[] tensors)
    Parameters
    Type Name Description
    Tensor[] tensors

    input tensors

    Returns
    Type Description
    Tensor

    output Tensor

    Dropout(Tensor, float)

    Dropout

    Declaration
    public virtual Tensor Dropout(Tensor X, float alpha)
    Parameters
    Type Name Description
    Tensor X
    float alpha

    alpha

    Returns
    Type Description
    Tensor

    output Tensor

    Elu(Tensor, float)

    ELU

    Declaration
    public virtual Tensor Elu(Tensor X, float alpha)
    Parameters
    Type Name Description
    Tensor X
    float alpha

    alpha

    Returns
    Type Description
    Tensor

    output Tensor

    Equal(Tensor, Tensor)

    Equal

    Declaration
    public virtual Tensor Equal(Tensor A, Tensor B)
    Parameters
    Type Name Description
    Tensor A
    Tensor B
    Returns
    Type Description
    Tensor

    Tensor with true where a == b

    Erf(Tensor)

    Erf

    Declaration
    public virtual Tensor Erf(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Exp(Tensor)

    Exponent e^x

    Declaration
    public virtual Tensor Exp(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Expand(Tensor, TensorShape)

    Expand

    Declaration
    public virtual Tensor Expand(Tensor X, TensorShape newShape)
    Parameters
    Type Name Description
    Tensor X
    TensorShape newShape
    Returns
    Type Description
    Tensor

    output Tensor

    Flatten(Tensor)

    Flatten

    Declaration
    public virtual Tensor Flatten(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Floor(Tensor)

    Floor

    Declaration
    public virtual Tensor Floor(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Gather(Tensor[], int)

    Gather

    Declaration
    public virtual Tensor Gather(Tensor[] tensors, int axis)
    Parameters
    Type Name Description
    Tensor[] tensors

    input tensors

    int axis

    axis

    Returns
    Type Description
    Tensor

    output Tensor

    Gaussian(float, float)

    Gaussian distribution

    Declaration
    protected float Gaussian(float mean, float stdDev)
    Parameters
    Type Name Description
    float mean

    mean

    float stdDev

    standard deviation

    Returns
    Type Description
    float

    random value

    GetModelExecutionsReporter()

    Get model executions reporter

    Declaration
    public IModelExecutionsReporter GetModelExecutionsReporter()
    Returns
    Type Description
    IModelExecutionsReporter

    model executions reporter

    GlobalAvgPool2D(Tensor)

    2D global average pooling

    Declaration
    public virtual Tensor GlobalAvgPool2D(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    GlobalAvgVariancePool2D(Tensor)

    2D global average variance pooling

    Declaration
    public virtual Tensor GlobalAvgVariancePool2D(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    GlobalMaxPool2D(Tensor)

    2D global max pooling

    Declaration
    public virtual Tensor GlobalMaxPool2D(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Greater(Tensor, Tensor)

    Greater

    Declaration
    public virtual Tensor Greater(Tensor A, Tensor B)
    Parameters
    Type Name Description
    Tensor A
    Tensor B
    Returns
    Type Description
    Tensor

    Tensor with true where a > b

    GreaterEqual(Tensor, Tensor)

    Greater or equal

    Declaration
    public virtual Tensor GreaterEqual(Tensor A, Tensor B)
    Parameters
    Type Name Description
    Tensor A
    Tensor B
    Returns
    Type Description
    Tensor

    Tensor with true where a >= b

    HardSigmoid(Tensor, float, float)

    HardSigmoid

    Declaration
    public virtual Tensor HardSigmoid(Tensor X, float alpha, float beta)
    Parameters
    Type Name Description
    Tensor X
    float alpha

    alpha

    float beta
    Returns
    Type Description
    Tensor

    output Tensor

    IsFusedActivationSupported(FusedActivation)

    Check if fusedActivation is supported in-place

    Declaration
    protected virtual bool IsFusedActivationSupported(Layer.FusedActivation fusedActivation)
    Parameters
    Type Name Description
    Layer.FusedActivation fusedActivation

    fused activation type

    Returns
    Type Description
    bool

    true if supported in-place

    LRN(Tensor, float, float, float, int)

    LRN (Local Response Normalization)

    Declaration
    public virtual Tensor LRN(Tensor X, float alpha, float beta, float bias, int size)
    Parameters
    Type Name Description
    Tensor X
    float alpha

    alpha

    float beta

    beta

    float bias

    bias

    int size

    size

    Returns
    Type Description
    Tensor

    output Tensor

    LSTM(Tensor, Tensor[], Tensor[], Tensor[], Tensor[], Tensor, Tensor)

    LSTM

    Declaration
    public virtual Tensor[] LSTM(Tensor X, Tensor[] W, Tensor[] R, Tensor[] Wb, Tensor[] Rb, Tensor hidden, Tensor cell)
    Parameters
    Type Name Description
    Tensor X

    The input sequences packed into one 3-D tensor.

    Tensor[] W

    W parameter weight matrix for input, output, forget, and cell gates - W[iofc]

    Tensor[] R

    R recurrence weight matrix for input, output, forget, and cell gates - R[iofc]

    Tensor[] Wb

    W bias vectors for input, output, forget, and cell gates - Wb[iofc]

    Tensor[] Rb

    R bias vectors for input, output, forget, and cell gates - Rb[iofc]

    Tensor hidden

    Initial value of the hidden

    Tensor cell

    Initial value of the cell

    Returns
    Type Description
    Tensor[]

    [Y (concatenated intermediate values of the hidden), Y_h (final hidden), Y_c (final cell)]

    LeakyRelu(Tensor, float)

    Leaky ReLU

    Declaration
    public virtual Tensor LeakyRelu(Tensor X, float alpha)
    Parameters
    Type Name Description
    Tensor X
    float alpha

    alpha

    Returns
    Type Description
    Tensor

    output Tensor

    Less(Tensor, Tensor)

    Less

    Declaration
    public virtual Tensor Less(Tensor A, Tensor B)
    Parameters
    Type Name Description
    Tensor A
    Tensor B
    Returns
    Type Description
    Tensor

    Tensor with true where a < b

    LessEqual(Tensor, Tensor)

    Less or equal

    Declaration
    public virtual Tensor LessEqual(Tensor A, Tensor B)
    Parameters
    Type Name Description
    Tensor A
    Tensor B
    Returns
    Type Description
    Tensor

    Tensor with true where a < b

    Log(Tensor)

    Log

    Declaration
    public virtual Tensor Log(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    LogSoftmax(Tensor, int)

    LogSoftmax

    Declaration
    public virtual Tensor LogSoftmax(Tensor X, int axis)
    Parameters
    Type Name Description
    Tensor X
    int axis
    Returns
    Type Description
    Tensor

    output Tensor

    LogicalAnd(Tensor, Tensor)

    And

    Declaration
    public virtual Tensor LogicalAnd(Tensor A, Tensor B)
    Parameters
    Type Name Description
    Tensor A
    Tensor B
    Returns
    Type Description
    Tensor

    Tensor with true where a && b

    LogicalNot(Tensor)

    Not

    Declaration
    public virtual Tensor LogicalNot(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    Tensor with !x values

    LogicalOr(Tensor, Tensor)

    Or

    Declaration
    public virtual Tensor LogicalOr(Tensor A, Tensor B)
    Parameters
    Type Name Description
    Tensor A
    Tensor B
    Returns
    Type Description
    Tensor

    Tensor with true where a || b

    LogicalXor(Tensor, Tensor)

    Xor

    Declaration
    public virtual Tensor LogicalXor(Tensor A, Tensor B)
    Parameters
    Type Name Description
    Tensor A
    Tensor B
    Returns
    Type Description
    Tensor

    Tensor with true where a xor b

    MatMul(Tensor, bool, Tensor, bool)

    Simple 2D matrix multiplication O = X ⨯ Y

    Declaration
    public virtual Tensor MatMul(Tensor X, bool xTranspose, Tensor Y, bool yTranspose)
    Parameters
    Type Name Description
    Tensor X

    left Tensor

    bool xTranspose

    X transposed data flag

    Tensor Y

    right Tensor

    bool yTranspose

    Y transposed data flag

    Returns
    Type Description
    Tensor

    output Tensor

    MatMul(Tensor, int, Tensor, int)

    Multidimensional Matrix multiplication o = x ⨯ y

    Declaration
    public virtual Tensor MatMul(Tensor X, int rankX, Tensor Y, int rankY)
    Parameters
    Type Name Description
    Tensor X
    int rankX

    rank of x

    Tensor Y
    int rankY

    rank of y

    Returns
    Type Description
    Tensor

    output Tensor

    Max(Tensor[])

    Max

    Declaration
    public virtual Tensor Max(Tensor[] tensors)
    Parameters
    Type Name Description
    Tensor[] tensors

    input tensors

    Returns
    Type Description
    Tensor

    output Tensor

    MaxPool2D(Tensor, int[], int[], int[])

    2D max pooling

    Declaration
    public virtual Tensor MaxPool2D(Tensor X, int[] pool, int[] stride, int[] pad)
    Parameters
    Type Name Description
    Tensor X
    int[] pool

    pooling

    int[] stride

    stride

    int[] pad

    padding

    Returns
    Type Description
    Tensor

    output Tensor

    Mean(Tensor[])

    Mean

    Declaration
    public virtual Tensor Mean(Tensor[] tensors)
    Parameters
    Type Name Description
    Tensor[] tensors

    input tensors

    Returns
    Type Description
    Tensor

    output Tensor

    Min(Tensor[])

    Min

    Declaration
    public virtual Tensor Min(Tensor[] tensors)
    Parameters
    Type Name Description
    Tensor[] tensors

    input tensors

    Returns
    Type Description
    Tensor

    output Tensor

    Mul(Tensor[])

    Multiply tensors together

    Declaration
    public virtual Tensor Mul(Tensor[] tensors)
    Parameters
    Type Name Description
    Tensor[] tensors

    input tensors

    Returns
    Type Description
    Tensor

    output Tensor

    Multinomial(Tensor, int, int)

    Multinomial random distribution

    Declaration
    public virtual Tensor Multinomial(Tensor X, int count, int seed)
    Parameters
    Type Name Description
    Tensor X
    int count

    count

    int seed

    seed

    Returns
    Type Description
    Tensor

    output Tensor

    Neg(Tensor)

    Neg

    Declaration
    public virtual Tensor Neg(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    NewOutputTensor(DataType, TensorShape, string)

    Allocate new Tensor via allocator using AllocScope.LayerOutput scope

    Declaration
    protected Tensor NewOutputTensor(DataType type, TensorShape s, string name = "")
    Parameters
    Type Name Description
    DataType type

    data type

    TensorShape s

    shape of the tensor to be created

    string name

    tensor name

    Returns
    Type Description
    Tensor

    new Tensor

    NewTempTensor(DataType, TensorShape, string)

    Allocate new Tensor via allocator using AllocScope.InternalToLayer scope

    Declaration
    protected Tensor NewTempTensor(DataType type, TensorShape s, string name = "")
    Parameters
    Type Name Description
    DataType type

    data type

    TensorShape s

    shape of the tensor to be created

    string name

    tensor name

    Returns
    Type Description
    Tensor

    new Tensor

    NewTensor(DataType, TensorShape, AllocScope, string)

    Allocate new Tensor via allocator

    Declaration
    protected Tensor NewTensor(DataType dataType, TensorShape s, AllocScope scope, string name = "")
    Parameters
    Type Name Description
    DataType dataType

    data type

    TensorShape s

    shape

    AllocScope scope

    tensor lifetime scope

    string name

    name

    Returns
    Type Description
    Tensor

    new Tensor

    NewTensorForFusedActivation(DataType, TensorShape, FusedActivation)

    Allocate new Tensor via allocator tensor lifetime will be OutputLayer if activation is supported in place, InternalToLayer otherwise.

    Declaration
    protected Tensor NewTensorForFusedActivation(DataType dataType, TensorShape shape, Layer.FusedActivation fusedActivation)
    Parameters
    Type Name Description
    DataType dataType

    data type

    TensorShape shape

    shape of the tensor to be created

    Layer.FusedActivation fusedActivation

    fused activation type

    Returns
    Type Description
    Tensor

    new Tensor

    NewTensorLike(Tensor, AllocScope)

    Allocate new Tensor similar to specified Tensor t

    Declaration
    protected Tensor NewTensorLike(Tensor t, AllocScope scope)
    Parameters
    Type Name Description
    Tensor t

    Tensor

    AllocScope scope

    tensor lifetime scope

    Returns
    Type Description
    Tensor

    new Tensor

    NewTensorLike(Tensor[], AllocScope, bool)

    Allocate new Tensor corresponding to max shape of specified tensors

    Declaration
    protected Tensor NewTensorLike(Tensor[] tensors, AllocScope scope, bool validateType = true)
    Parameters
    Type Name Description
    Tensor[] tensors

    tensors

    AllocScope scope

    tensor lifetime scope

    bool validateType

    should this method validate that all tensors are the same type

    Returns
    Type Description
    Tensor

    new Tensor

    NonMaxSuppression(Tensor[], int, float, float, int)

    Non max suppression tensors[0] - boxes, tensors[1] - scores

    Declaration
    public Tensor NonMaxSuppression(Tensor[] tensors, int maxOutputBoxesPerClass, float iouThreshold, float scoreThreshold, int centerPointBox)
    Parameters
    Type Name Description
    Tensor[] tensors
    int maxOutputBoxesPerClass

    max output boxes per class

    float iouThreshold

    IOU (Intersection Over Union) threshold

    float scoreThreshold

    score threshold

    int centerPointBox

    center point box

    Returns
    Type Description
    Tensor

    output Tensor

    NonZero(Tensor)

    Indices for non zero values

    Declaration
    public Tensor NonZero(Tensor X)
    Parameters
    Type Name Description
    Tensor X

    input

    Returns
    Type Description
    Tensor

    output Tensor

    Normalization(Tensor, Tensor, Tensor, int, int, float, FusedActivation)

    Normalization

    Declaration
    public virtual Tensor Normalization(Tensor X, Tensor S, Tensor B, int pool, int axis, float epsilon, Layer.FusedActivation fusedActivation)
    Parameters
    Type Name Description
    Tensor X
    Tensor S
    Tensor B
    int pool

    pooling

    int axis

    axis

    float epsilon

    threshold

    Layer.FusedActivation fusedActivation

    fused activation type

    Returns
    Type Description
    Tensor

    output Tensor

    OneHot(Tensor, int, float, float, int)

    One hot

    Declaration
    public virtual Tensor OneHot(Tensor X, int depth, float onValue, float offValue, int inputRank = -1)
    Parameters
    Type Name Description
    Tensor X
    int depth

    output depth

    float onValue

    on value

    float offValue

    off value

    int inputRank

    input rank helper

    Returns
    Type Description
    Tensor

    output Tensor

    PRelu(Tensor, Tensor)

    PReLU

    Declaration
    public virtual Tensor PRelu(Tensor X, Tensor S)
    Parameters
    Type Name Description
    Tensor X
    Tensor S
    Returns
    Type Description
    Tensor

    output Tensor

    Pad2DEdge(Tensor, int[])

    Edge padding

    Declaration
    public virtual Tensor Pad2DEdge(Tensor X, int[] pad)
    Parameters
    Type Name Description
    Tensor X
    int[] pad

    padding

    Returns
    Type Description
    Tensor

    output Tensor

    Pad2DReflect(Tensor, int[])

    Reflection padding

    Declaration
    public virtual Tensor Pad2DReflect(Tensor X, int[] pad)
    Parameters
    Type Name Description
    Tensor X
    int[] pad

    padding

    Returns
    Type Description
    Tensor

    output Tensor

    Pad2DSymmetric(Tensor, int[])

    Symmetric padding

    Declaration
    public virtual Tensor Pad2DSymmetric(Tensor X, int[] pad)
    Parameters
    Type Name Description
    Tensor X
    int[] pad

    padding

    Returns
    Type Description
    Tensor

    output Tensor

    PostLayerCleanup()

    Called after every layer execution. It allows IOps to run cleanup operations such as clearing temporary buffers only used in the scope of the last layer executed.

    Declaration
    public virtual void PostLayerCleanup()

    Pow(Tensor, float)

    Power

    Declaration
    public virtual Tensor Pow(Tensor X, float alpha)
    Parameters
    Type Name Description
    Tensor X
    float alpha

    alpha

    Returns
    Type Description
    Tensor

    output Tensor

    Pow(Tensor[])

    Raise tensors to the power o =tensors[0] ^ tensors[1] ^ ... ^ tensors[N-1]

    Declaration
    public virtual Tensor Pow(Tensor[] tensors)
    Parameters
    Type Name Description
    Tensor[] tensors

    input tensors

    Returns
    Type Description
    Tensor

    output Tensor

    Prepare(Tensor)

    Prepares tensor for use

    Declaration
    public virtual Tensor Prepare(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    Tensor

    PrepareNoAlloc(Tensor)

    Prepares tensor for use without uploading internal data to device

    Declaration
    public virtual Tensor PrepareNoAlloc(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    Tensor

    RandomNormal(TensorShape, float, float, int)

    Normal random distribution

    Declaration
    public virtual Tensor RandomNormal(TensorShape s, float mean, float scale, int seed)
    Parameters
    Type Name Description
    TensorShape s

    shape

    float mean

    mean

    float scale

    scale

    int seed

    seed

    Returns
    Type Description
    Tensor

    output Tensor

    RandomUniform(TensorShape, float, float, int)

    Uniform random distribution

    Declaration
    public virtual Tensor RandomUniform(TensorShape s, float mean, float scale, int seed)
    Parameters
    Type Name Description
    TensorShape s

    shape

    float mean

    mean

    float scale

    scale

    int seed

    seed

    Returns
    Type Description
    Tensor

    output Tensor

    Reciprocal(Tensor)

    Reciprocal (1/x)

    Declaration
    public virtual Tensor Reciprocal(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    ReduceMax(Tensor, int)

    Reduce with max

    Declaration
    public virtual Tensor ReduceMax(Tensor X, int axis)
    Parameters
    Type Name Description
    Tensor X
    int axis

    axis

    Returns
    Type Description
    Tensor

    output Tensor

    ReduceMean(Tensor, int)

    Reduce with mean

    Declaration
    public virtual Tensor ReduceMean(Tensor X, int axis)
    Parameters
    Type Name Description
    Tensor X
    int axis

    axis

    Returns
    Type Description
    Tensor

    output Tensor

    ReduceMin(Tensor, int)

    Reduce with min

    Declaration
    public virtual Tensor ReduceMin(Tensor X, int axis)
    Parameters
    Type Name Description
    Tensor X
    int axis

    axis

    Returns
    Type Description
    Tensor

    output Tensor

    ReduceProd(Tensor, int)

    Reduce with product

    Declaration
    public virtual Tensor ReduceProd(Tensor X, int axis)
    Parameters
    Type Name Description
    Tensor X
    int axis

    axis

    Returns
    Type Description
    Tensor

    output Tensor

    ReduceSum(Tensor, int)

    Reduce with sum

    Declaration
    public virtual Tensor ReduceSum(Tensor X, int axis)
    Parameters
    Type Name Description
    Tensor X
    int axis

    axis

    Returns
    Type Description
    Tensor

    output Tensor

    Relu(Tensor)

    ReLU

    Declaration
    public virtual Tensor Relu(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Relu6(Tensor)

    ReLU capped to 6

    Declaration
    public virtual Tensor Relu6(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Resample2D(Tensor, int[], bool)

    Resample 2D

    Declaration
    public virtual Tensor Resample2D(Tensor X, int[] size, bool bilinear)
    Parameters
    Type Name Description
    Tensor X
    int[] size

    size

    bool bilinear

    bilinear flag

    Returns
    Type Description
    Tensor

    output Tensor

    ResetAllocator(bool)

    Reset internal allocator

    Declaration
    public virtual void ResetAllocator(bool keepCachedMemory = true)
    Parameters
    Type Name Description
    bool keepCachedMemory

    keep cached memory flag

    Reshape(Tensor, TensorShape)

    Reshape

    Declaration
    public virtual Tensor Reshape(Tensor X, TensorShape newShape)
    Parameters
    Type Name Description
    Tensor X
    TensorShape newShape
    Returns
    Type Description
    Tensor

    output Tensor

    RoiAlign(Tensor, Tensor, Tensor, int, int, int, float)

    RoiAlign

    Declaration
    public virtual Tensor RoiAlign(Tensor X, Tensor Rois, Tensor Indices, int outputHeight, int outputWidth, int samplingRatio, float spatialScale)
    Parameters
    Type Name Description
    Tensor X
    Tensor Rois
    Tensor Indices
    int outputHeight

    outputHeight

    int outputWidth

    outputWidth

    int samplingRatio

    samplingRatio

    float spatialScale

    spatialScale

    Returns
    Type Description
    Tensor

    output Tensor

    Round(Tensor)

    Round to nearest integer. In case of halfs, round to nearest even integer

    Declaration
    public virtual Tensor Round(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    ScaleBias(Tensor, Tensor, Tensor)

    Scale bias o = s * x + b, element wise

    Declaration
    public virtual Tensor ScaleBias(Tensor X, Tensor S, Tensor B)
    Parameters
    Type Name Description
    Tensor X
    Tensor S
    Tensor B
    Returns
    Type Description
    Tensor

    output Tensor

    ScatterND(Tensor, Tensor, Tensor, ScatterNDReductionMode)

    ScatterND

    Declaration
    public virtual Tensor ScatterND(Tensor X, Tensor indices, Tensor updates, Layer.ScatterNDReductionMode reduction)
    Parameters
    Type Name Description
    Tensor X

    input tensor

    Tensor indices

    indices

    Tensor updates

    updates

    Layer.ScatterNDReductionMode reduction

    reduction mode

    Returns
    Type Description
    Tensor

    output Tensor

    Selu(Tensor, float, float)

    SELU

    Declaration
    public virtual Tensor Selu(Tensor X, float alpha, float gamma)
    Parameters
    Type Name Description
    Tensor X
    float alpha

    alpha

    float gamma

    gamma

    Returns
    Type Description
    Tensor

    output Tensor

    SetModelExecutionsReporter(IModelExecutionsReporter)

    Set model executions reporter

    model executions reporter
    Declaration
    public void SetModelExecutionsReporter(IModelExecutionsReporter executionsReporter)
    Parameters
    Type Name Description
    IModelExecutionsReporter executionsReporter

    Shape(Tensor, int)

    Shape of the input

    Declaration
    public Tensor Shape(Tensor X, int axis = -1)
    Parameters
    Type Name Description
    Tensor X

    input

    int axis

    axis

    Returns
    Type Description
    Tensor

    output Tensor

    Sigmoid(Tensor)

    Sigmoid

    Declaration
    public virtual Tensor Sigmoid(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Sign(Tensor)

    Sign

    Declaration
    public virtual Tensor Sign(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    Tensor with 1 if x > 0 -1 if < 0 and 0 if == 0 values

    Sin(Tensor)

    Sin

    Declaration
    public virtual Tensor Sin(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Sinh(Tensor)

    Sinh

    Declaration
    public virtual Tensor Sinh(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Softmax(Tensor, int)

    Softmax

    Declaration
    public virtual Tensor Softmax(Tensor X, int axis)
    Parameters
    Type Name Description
    Tensor X
    int axis

    axis

    Returns
    Type Description
    Tensor

    output Tensor

    Softplus(Tensor)

    Softplus

    Declaration
    public virtual Tensor Softplus(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    SpaceToDepth(Tensor, int[])

    Space to depth

    Declaration
    public virtual Tensor SpaceToDepth(Tensor X, int[] blocksize)
    Parameters
    Type Name Description
    Tensor X
    int[] blocksize
    Returns
    Type Description
    Tensor

    output Tensor

    Sqrt(Tensor)

    Sqrt

    Declaration
    public virtual Tensor Sqrt(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    StridedSlice(Tensor, int[], int[], int[])

    Strided slice

    Declaration
    public virtual Tensor StridedSlice(Tensor X, int[] starts4Dor8D, int[] ends4Dor8D, int[] strides4Dor8D)
    Parameters
    Type Name Description
    Tensor X
    int[] starts4Dor8D
    int[] ends4Dor8D
    int[] strides4Dor8D

    stride

    Returns
    Type Description
    Tensor

    output Tensor

    Sub(Tensor[])

    Subtract tensors o = tensors[0] - tensors[1] - ... - tensors[N-1]

    Declaration
    public virtual Tensor Sub(Tensor[] tensors)
    Parameters
    Type Name Description
    Tensor[] tensors

    input tensors

    Returns
    Type Description
    Tensor

    output Tensor

    Swish(Tensor)

    Swish

    Declaration
    public virtual Tensor Swish(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Tan(Tensor)

    Tan

    Declaration
    public virtual Tensor Tan(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Tanh(Tensor)

    Tanh

    Declaration
    public virtual Tensor Tanh(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Tile(Tensor, int[])

    Tile

    Declaration
    public virtual Tensor Tile(Tensor X, int[] repeats)
    Parameters
    Type Name Description
    Tensor X
    int[] repeats

    repetition counts

    Returns
    Type Description
    Tensor

    output Tensor

    TopKIndices(Tensor, int, int, bool, bool)

    Top K indices

    Declaration
    public virtual Tensor TopKIndices(Tensor X, int k, int axis, bool largest, bool sorted)
    Parameters
    Type Name Description
    Tensor X
    int k

    k

    int axis

    axis

    bool largest

    largest flag

    bool sorted

    sorted flag

    Returns
    Type Description
    Tensor

    output Tensor

    TopKValues(Tensor, Tensor, int)

    Top K values

    Declaration
    public virtual Tensor TopKValues(Tensor X, Tensor I, int axis)
    Parameters
    Type Name Description
    Tensor X

    input

    Tensor I

    indices

    int axis

    axis

    Returns
    Type Description
    Tensor

    output Tensor

    Transpose(Tensor)

    Transpose matrix

    Declaration
    public virtual Tensor Transpose(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Transpose(Tensor, int[])

    Transpose according to permutations

    Declaration
    public virtual Tensor Transpose(Tensor X, int[] permutations)
    Parameters
    Type Name Description
    Tensor X
    int[] permutations

    new axis order

    Returns
    Type Description
    Tensor

    output Tensor

    Upsample2D(Tensor, int[], bool)

    Upsample 2D

    Declaration
    public virtual Tensor Upsample2D(Tensor X, int[] scale, bool bilinear)
    Parameters
    Type Name Description
    Tensor X
    int[] scale

    scale

    bool bilinear

    bilinear flag

    Returns
    Type Description
    Tensor

    output Tensor

    Upsample3D(Tensor, int[], bool)

    Upsample 3D

    Declaration
    public virtual Tensor Upsample3D(Tensor X, int[] scale, bool trilinear)
    Parameters
    Type Name Description
    Tensor X
    int[] scale

    scale

    bool trilinear

    trilinear flag

    Returns
    Type Description
    Tensor

    output Tensor

    Where(Tensor, Tensor, Tensor)

    Where

    Declaration
    public virtual Tensor Where(Tensor C, Tensor A, Tensor B)
    Parameters
    Type Name Description
    Tensor C
    Tensor A
    Tensor B
    Returns
    Type Description
    Tensor

    Tensor with values c ? a : b

    Implements

    IOps
    IOpsStatistics
    In This Article
    Back to top
    Copyright © 2025 Unity Technologies — Trademarks and terms of use
    • Legal
    • Privacy Policy
    • Cookie Policy
    • Do Not Sell or Share My Personal Information
    • Your Privacy Choices (Cookie Settings)