docs.unity3d.com
    Show / Hide Table of Contents

    Class StatsOps

    Proxy IOps implementation for tracking computational expenses for specific model

    Inheritance
    Object
    StatsOps
    Namespace: Unity.Barracuda
    Syntax
    public class StatsOps : object, IOps, IOpsStatistics, IModelCompiler

    Constructors

    StatsOps(IOps)

    Create StatsOps

    Declaration
    public StatsOps(IOps ops)
    Parameters
    Type Name Description
    IOps ops

    target ops

    Methods

    GetModelExecutionsReporter()

    Get model executions reporter

    Declaration
    public IModelExecutionsReporter GetModelExecutionsReporter()
    Returns
    Type Description
    IModelExecutionsReporter

    model executions reporter

    Implements
    IOps.GetModelExecutionsReporter()

    LSTM(Tensor, Tensor[], Tensor[], Tensor[], Tensor[], Tensor, Tensor)

    LSTM

    Declaration
    public Tensor[] LSTM(Tensor X, Tensor[] W, Tensor[] R, Tensor[] Wb, Tensor[] Rb, Tensor hidden, Tensor cell)
    Parameters
    Type Name Description
    Tensor X

    The input sequences packed into one 3-D tensor.

    Tensor[] W

    W parameter weight matrix for input, output, forget, and cell gates - W[iofc]

    Tensor[] R

    R recurrence weight matrix for input, output, forget, and cell gates - R[iofc]

    Tensor[] Wb

    W bias vectors for input, output, forget, and cell gates - Wb[iofc]

    Tensor[] Rb

    R bias vectors for input, output, forget, and cell gates - Rb[iofc]

    Tensor hidden

    Initial value of the hidden

    Tensor cell

    Initial value of the cell

    Returns
    Type Description
    Tensor[]

    [Y (concatenated intermediate values of the hidden), Y_h (final hidden), Y_c (final cell)]

    Implements
    IOps.LSTM(Tensor, Tensor[], Tensor[], Tensor[], Tensor[], Tensor, Tensor)

    NonZero(Tensor)

    Indices for non zero values

    Declaration
    public Tensor NonZero(Tensor X)
    Parameters
    Type Name Description
    Tensor X

    input

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.NonZero(Tensor)

    PostLayerCleanup()

    Called after every layer execution. It allows IOps to run cleanup operations such as clearing temporary buffers only used in the scope of the last layer executed.

    Declaration
    public virtual void PostLayerCleanup()
    Implements
    IOps.PostLayerCleanup()

    PreExecuteLayer(Layer, Tensor[])

    Declaration
    public virtual void PreExecuteLayer(Layer layer, Tensor[] inputs)
    Parameters
    Type Name Description
    Layer layer
    Tensor[] inputs

    PrepareModel(Model, IDictionary<String, TensorShape>, IVars)

    Declaration
    public virtual void PrepareModel(Model model, IDictionary<string, TensorShape> inputShapes, IVars vars)
    Parameters
    Type Name Description
    Model model
    IDictionary<String, TensorShape> inputShapes
    IVars vars

    TopKValues(Tensor, Tensor, Int32)

    Top K values

    Declaration
    public Tensor TopKValues(Tensor X, Tensor I, int axis)
    Parameters
    Type Name Description
    Tensor X

    input

    Tensor I

    indices

    Int32 axis

    axis

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.TopKValues(Tensor, Tensor, Int32)

    ToString()

    Build execution summary

    Declaration
    public override string ToString()
    Returns
    Type Description
    String

    execution summary

    Explicit Interface Implementations

    IOps.Abs(Tensor)

    Abs

    Declaration
    Tensor IOps.Abs(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Abs(Tensor)

    IOps.Acos(Tensor)

    Acos

    Declaration
    Tensor IOps.Acos(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Acos(Tensor)

    IOps.Acosh(Tensor)

    Acosh

    Declaration
    Tensor IOps.Acosh(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Acosh(Tensor)

    IOps.Add(Tensor[])

    Add tensors together

    Declaration
    Tensor IOps.Add(Tensor[] tensors)
    Parameters
    Type Name Description
    Tensor[] tensors

    input tensors

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Add(Tensor[])

    IOps.ArgMax(Tensor, Int32)

    ArgMax

    Declaration
    Tensor IOps.ArgMax(Tensor X, int axis)
    Parameters
    Type Name Description
    Tensor X
    Int32 axis

    axis

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.ArgMax(Tensor, Int32)

    IOps.ArgMin(Tensor, Int32)

    ArgMax

    Declaration
    Tensor IOps.ArgMin(Tensor X, int axis)
    Parameters
    Type Name Description
    Tensor X
    Int32 axis

    axis

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.ArgMin(Tensor, Int32)

    IOps.Asin(Tensor)

    Asin

    Declaration
    Tensor IOps.Asin(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Asin(Tensor)

    IOps.Asinh(Tensor)

    Asinh

    Declaration
    Tensor IOps.Asinh(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Asinh(Tensor)

    IOps.Atan(Tensor)

    Atan

    Declaration
    Tensor IOps.Atan(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Atan(Tensor)

    IOps.Atanh(Tensor)

    Atanh

    Declaration
    Tensor IOps.Atanh(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Atanh(Tensor)

    IOps.AvgPool2D(Tensor, Int32[], Int32[], Int32[])

    2D average pooling

    Declaration
    Tensor IOps.AvgPool2D(Tensor X, int[] pool, int[] stride, int[] pad)
    Parameters
    Type Name Description
    Tensor X
    Int32[] pool

    pooling

    Int32[] stride

    stride

    Int32[] pad

    padding

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.AvgPool2D(Tensor, Int32[], Int32[], Int32[])

    IOps.Border2D(Tensor, Int32[], Single)

    2D border padding

    Declaration
    Tensor IOps.Border2D(Tensor X, int[] pad, float value)
    Parameters
    Type Name Description
    Tensor X
    Int32[] pad

    padding

    Single value
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Border2D(Tensor, Int32[], Single)

    IOps.Border3D(Tensor, Int32[], Single)

    3D border padding

    Declaration
    Tensor IOps.Border3D(Tensor X, int[] pad, float value)
    Parameters
    Type Name Description
    Tensor X
    Int32[] pad

    padding

    Single value
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Border3D(Tensor, Int32[], Single)

    IOps.Ceil(Tensor)

    Ceil

    Declaration
    Tensor IOps.Ceil(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Ceil(Tensor)

    IOps.Clip(Tensor, Single, Single)

    Clip

    Declaration
    Tensor IOps.Clip(Tensor X, float min, float max)
    Parameters
    Type Name Description
    Tensor X
    Single min

    min value

    Single max

    max value

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Clip(Tensor, Single, Single)

    IOps.Concat(Tensor[], Int32)

    Concatenate tensors across axis

    Declaration
    Tensor IOps.Concat(Tensor[] tensors, int axis)
    Parameters
    Type Name Description
    Tensor[] tensors

    input tensors

    Int32 axis

    axis

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Concat(Tensor[], Int32)

    IOps.ConstantOfShape(TensorShape, Single)

    Creates a constant of shape input

    Declaration
    Tensor IOps.ConstantOfShape(TensorShape X, float value)
    Parameters
    Type Name Description
    TensorShape X

    input shape

    Single value

    value

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.ConstantOfShape(TensorShape, Single)

    IOps.Conv2D(Tensor, Tensor, Tensor, Int32[], Int32[], Layer.FusedActivation)

    2D convolution

    Declaration
    Tensor IOps.Conv2D(Tensor X, Tensor K, Tensor B, int[] stride, int[] pad, Layer.FusedActivation fusedActivation)
    Parameters
    Type Name Description
    Tensor X
    Tensor K
    Tensor B
    Int32[] stride

    stride

    Int32[] pad

    padding

    Layer.FusedActivation fusedActivation

    fused activation type

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Conv2D(Tensor, Tensor, Tensor, Int32[], Int32[], Layer.FusedActivation)

    IOps.Conv2DTrans(Tensor, Tensor, Tensor, Int32[], Int32[], Int32[], Layer.FusedActivation)

    Transpose 2D convolution

    Declaration
    Tensor IOps.Conv2DTrans(Tensor X, Tensor K, Tensor B, int[] stride, int[] pad, int[] outputAdjustment, Layer.FusedActivation fusedActivation)
    Parameters
    Type Name Description
    Tensor X
    Tensor K
    Tensor B
    Int32[] stride

    stride

    Int32[] pad

    padding

    Int32[] outputAdjustment

    output adjustments

    Layer.FusedActivation fusedActivation

    fused activation type

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Conv2DTrans(Tensor, Tensor, Tensor, Int32[], Int32[], Int32[], Layer.FusedActivation)

    IOps.Conv3D(Tensor, Tensor, Tensor, Int32[], Int32[], Layer.FusedActivation)

    3D convolution

    Declaration
    Tensor IOps.Conv3D(Tensor X, Tensor K, Tensor B, int[] stride, int[] pad, Layer.FusedActivation fusedActivation)
    Parameters
    Type Name Description
    Tensor X
    Tensor K
    Tensor B
    Int32[] stride

    stride

    Int32[] pad

    padding

    Layer.FusedActivation fusedActivation

    fused activation type

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Conv3D(Tensor, Tensor, Tensor, Int32[], Int32[], Layer.FusedActivation)

    IOps.Copy(Tensor)

    Copy

    Declaration
    Tensor IOps.Copy(Tensor x)
    Parameters
    Type Name Description
    Tensor x

    input

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Copy(Tensor)

    IOps.Cos(Tensor)

    Cos

    Declaration
    Tensor IOps.Cos(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Cos(Tensor)

    IOps.Cosh(Tensor)

    Cosh

    Declaration
    Tensor IOps.Cosh(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Cosh(Tensor)

    IOps.Dense(Tensor, Tensor, Tensor, Layer.FusedActivation)

    Dense layer (matrix multiplication) o = x ⨯ w + b

    Declaration
    Tensor IOps.Dense(Tensor X, Tensor W, Tensor B, Layer.FusedActivation fusedActivation)
    Parameters
    Type Name Description
    Tensor X
    Tensor W
    Tensor B
    Layer.FusedActivation fusedActivation

    fused activation type

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Dense(Tensor, Tensor, Tensor, Layer.FusedActivation)

    IOps.Dense3(Tensor, Tensor, Tensor)

    rank3 Dense layer (matrix multiplication) o = x ⨯ w + b O: N,,W,C / X: N,,W,C / W:N,,,C / B:N,,,_

    Declaration
    Tensor IOps.Dense3(Tensor X, Tensor W, Tensor B)
    Parameters
    Type Name Description
    Tensor X
    Tensor W
    Tensor B
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Dense3(Tensor, Tensor, Tensor)

    IOps.DepthToSpace(Tensor, Int32[], Layer.DepthToSpaceMode)

    Depth to space

    Declaration
    Tensor IOps.DepthToSpace(Tensor X, int[] scale, Layer.DepthToSpaceMode mode)
    Parameters
    Type Name Description
    Tensor X
    Int32[] scale

    scale

    Layer.DepthToSpaceMode mode

    mode

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.DepthToSpace(Tensor, Int32[], Layer.DepthToSpaceMode)

    IOps.DepthwiseConv2D(Tensor, Tensor, Tensor, Int32[], Int32[], Layer.FusedActivation)

    Depthwise 2D convolution

    Declaration
    Tensor IOps.DepthwiseConv2D(Tensor X, Tensor K, Tensor B, int[] stride, int[] pad, Layer.FusedActivation fusedActivation)
    Parameters
    Type Name Description
    Tensor X
    Tensor K
    Tensor B
    Int32[] stride

    stride

    Int32[] pad

    padding

    Layer.FusedActivation fusedActivation

    fused activation type

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.DepthwiseConv2D(Tensor, Tensor, Tensor, Int32[], Int32[], Layer.FusedActivation)

    IOps.Div(Tensor[])

    Divide tensors o = tensors[0] / tensors[1] / ... / tensors[N-1]

    Declaration
    Tensor IOps.Div(Tensor[] tensors)
    Parameters
    Type Name Description
    Tensor[] tensors

    input tensors

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Div(Tensor[])

    IOps.Dropout(Tensor, Single)

    Dropout

    Declaration
    Tensor IOps.Dropout(Tensor X, float alpha)
    Parameters
    Type Name Description
    Tensor X
    Single alpha

    alpha

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Dropout(Tensor, Single)

    IOps.Elu(Tensor, Single)

    ELU

    Declaration
    Tensor IOps.Elu(Tensor X, float alpha)
    Parameters
    Type Name Description
    Tensor X
    Single alpha

    alpha

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Elu(Tensor, Single)

    IOps.Equal(Tensor, Tensor)

    Equal

    Declaration
    Tensor IOps.Equal(Tensor a, Tensor b)
    Parameters
    Type Name Description
    Tensor a

    left Tensor

    Tensor b

    right Tensor

    Returns
    Type Description
    Tensor

    Tensor with true where a == b

    Implements
    IOps.Equal(Tensor, Tensor)

    IOps.Erf(Tensor)

    Erf

    Declaration
    Tensor IOps.Erf(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Erf(Tensor)

    IOps.Exp(Tensor)

    Exponent e^x

    Declaration
    Tensor IOps.Exp(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Exp(Tensor)

    IOps.Expand(Tensor, TensorShape)

    Expand

    Declaration
    Tensor IOps.Expand(Tensor X, TensorShape shape)
    Parameters
    Type Name Description
    Tensor X
    TensorShape shape

    new shape

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Expand(Tensor, TensorShape)

    IOps.Flatten(Tensor)

    Flatten

    Declaration
    Tensor IOps.Flatten(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Flatten(Tensor)

    IOps.Floor(Tensor)

    Floor

    Declaration
    Tensor IOps.Floor(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Floor(Tensor)

    IOps.Gather(Tensor[], Int32)

    Gather

    Declaration
    Tensor IOps.Gather(Tensor[] tensors, int axis)
    Parameters
    Type Name Description
    Tensor[] tensors

    input tensors

    Int32 axis

    axis

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Gather(Tensor[], Int32)

    IOps.GlobalAvgPool2D(Tensor)

    2D global average pooling

    Declaration
    Tensor IOps.GlobalAvgPool2D(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.GlobalAvgPool2D(Tensor)

    IOps.GlobalAvgVariancePool2D(Tensor)

    2D global average variance pooling

    Declaration
    Tensor IOps.GlobalAvgVariancePool2D(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.GlobalAvgVariancePool2D(Tensor)

    IOps.GlobalMaxPool2D(Tensor)

    2D global max pooling

    Declaration
    Tensor IOps.GlobalMaxPool2D(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.GlobalMaxPool2D(Tensor)

    IOps.Greater(Tensor, Tensor)

    Greater

    Declaration
    Tensor IOps.Greater(Tensor a, Tensor b)
    Parameters
    Type Name Description
    Tensor a

    left Tensor

    Tensor b

    right Tensor

    Returns
    Type Description
    Tensor

    Tensor with true where a > b

    Implements
    IOps.Greater(Tensor, Tensor)

    IOps.GreaterEqual(Tensor, Tensor)

    Greater or equal

    Declaration
    Tensor IOps.GreaterEqual(Tensor a, Tensor b)
    Parameters
    Type Name Description
    Tensor a

    left Tensor

    Tensor b

    right Tensor

    Returns
    Type Description
    Tensor

    Tensor with true where a >= b

    Implements
    IOps.GreaterEqual(Tensor, Tensor)

    IOps.HardSigmoid(Tensor, Single, Single)

    HardSigmoid

    Declaration
    Tensor IOps.HardSigmoid(Tensor X, float alpha, float beta)
    Parameters
    Type Name Description
    Tensor X
    Single alpha

    alpha

    Single beta
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.HardSigmoid(Tensor, Single, Single)

    IOps.LeakyRelu(Tensor, Single)

    Leaky ReLU

    Declaration
    Tensor IOps.LeakyRelu(Tensor X, float alpha)
    Parameters
    Type Name Description
    Tensor X
    Single alpha

    alpha

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.LeakyRelu(Tensor, Single)

    IOps.Less(Tensor, Tensor)

    Less

    Declaration
    Tensor IOps.Less(Tensor a, Tensor b)
    Parameters
    Type Name Description
    Tensor a

    left Tensor

    Tensor b

    right Tensor

    Returns
    Type Description
    Tensor

    Tensor with true where a < b

    Implements
    IOps.Less(Tensor, Tensor)

    IOps.LessEqual(Tensor, Tensor)

    Less or equal

    Declaration
    Tensor IOps.LessEqual(Tensor a, Tensor b)
    Parameters
    Type Name Description
    Tensor a

    left Tensor

    Tensor b

    right Tensor

    Returns
    Type Description
    Tensor

    Tensor with true where a < b

    Implements
    IOps.LessEqual(Tensor, Tensor)

    IOps.Log(Tensor)

    Log

    Declaration
    Tensor IOps.Log(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Log(Tensor)

    IOps.LogicalAnd(Tensor, Tensor)

    And

    Declaration
    Tensor IOps.LogicalAnd(Tensor a, Tensor b)
    Parameters
    Type Name Description
    Tensor a

    left Tensor

    Tensor b

    right Tensor

    Returns
    Type Description
    Tensor

    Tensor with true where a && b

    Implements
    IOps.LogicalAnd(Tensor, Tensor)

    IOps.LogicalNot(Tensor)

    Not

    Declaration
    Tensor IOps.LogicalNot(Tensor x)
    Parameters
    Type Name Description
    Tensor x

    input

    Returns
    Type Description
    Tensor

    Tensor with !x values

    Implements
    IOps.LogicalNot(Tensor)

    IOps.LogicalOr(Tensor, Tensor)

    Or

    Declaration
    Tensor IOps.LogicalOr(Tensor a, Tensor b)
    Parameters
    Type Name Description
    Tensor a

    left Tensor

    Tensor b

    right Tensor

    Returns
    Type Description
    Tensor

    Tensor with true where a || b

    Implements
    IOps.LogicalOr(Tensor, Tensor)

    IOps.LogicalXor(Tensor, Tensor)

    Xor

    Declaration
    Tensor IOps.LogicalXor(Tensor a, Tensor b)
    Parameters
    Type Name Description
    Tensor a

    left Tensor

    Tensor b

    right Tensor

    Returns
    Type Description
    Tensor

    Tensor with true where a xor b

    Implements
    IOps.LogicalXor(Tensor, Tensor)

    IOps.LogSoftmax(Tensor, Int32)

    LogSoftmax

    Declaration
    Tensor IOps.LogSoftmax(Tensor X, int axis)
    Parameters
    Type Name Description
    Tensor X
    Int32 axis
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.LogSoftmax(Tensor, Int32)

    IOps.LRN(Tensor, Single, Single, Single, Int32)

    LRN (Local Response Normalization)

    Declaration
    Tensor IOps.LRN(Tensor X, float alpha, float beta, float bias, int size)
    Parameters
    Type Name Description
    Tensor X
    Single alpha

    alpha

    Single beta

    beta

    Single bias

    bias

    Int32 size

    size

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.LRN(Tensor, Single, Single, Single, Int32)

    IOps.MatMul(Tensor, Boolean, Tensor, Boolean)

    Matrix multiplication o = x ⨯ y

    Declaration
    Tensor IOps.MatMul(Tensor X, bool xTranspose, Tensor Y, bool yTranspose)
    Parameters
    Type Name Description
    Tensor X
    Boolean xTranspose

    transposed x flag

    Tensor Y
    Boolean yTranspose

    transposed y flag

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.MatMul(Tensor, Boolean, Tensor, Boolean)

    IOps.MatMul(Tensor, Int32, Tensor, Int32)

    Multidimensional Matrix multiplication o = x ⨯ y

    Declaration
    Tensor IOps.MatMul(Tensor X, int rankX, Tensor Y, int rankY)
    Parameters
    Type Name Description
    Tensor X
    Int32 rankX

    rank of x

    Tensor Y
    Int32 rankY

    rank of y

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.MatMul(Tensor, Int32, Tensor, Int32)

    IOps.Max(Tensor[])

    Max

    Declaration
    Tensor IOps.Max(Tensor[] tensors)
    Parameters
    Type Name Description
    Tensor[] tensors

    input tensors

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Max(Tensor[])

    IOps.MaxPool2D(Tensor, Int32[], Int32[], Int32[])

    2D max pooling

    Declaration
    Tensor IOps.MaxPool2D(Tensor X, int[] pool, int[] stride, int[] pad)
    Parameters
    Type Name Description
    Tensor X
    Int32[] pool

    pooling

    Int32[] stride

    stride

    Int32[] pad

    padding

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.MaxPool2D(Tensor, Int32[], Int32[], Int32[])

    IOps.Mean(Tensor[])

    Mean

    Declaration
    Tensor IOps.Mean(Tensor[] tensors)
    Parameters
    Type Name Description
    Tensor[] tensors

    input tensors

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Mean(Tensor[])

    IOps.Min(Tensor[])

    Min

    Declaration
    Tensor IOps.Min(Tensor[] tensors)
    Parameters
    Type Name Description
    Tensor[] tensors

    input tensors

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Min(Tensor[])

    IOps.Mul(Tensor[])

    Multiply tensors together

    Declaration
    Tensor IOps.Mul(Tensor[] tensors)
    Parameters
    Type Name Description
    Tensor[] tensors

    input tensors

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Mul(Tensor[])

    IOps.Multinomial(Tensor, Int32, Int32)

    Multinomial random distribution

    Declaration
    Tensor IOps.Multinomial(Tensor X, int count, int seed)
    Parameters
    Type Name Description
    Tensor X
    Int32 count

    count

    Int32 seed

    seed

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Multinomial(Tensor, Int32, Int32)

    IOps.Neg(Tensor)

    Neg

    Declaration
    Tensor IOps.Neg(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Neg(Tensor)

    IOps.NonMaxSuppression(Tensor[], Int32, Single, Single, Int32)

    Non max suppression tensors[0] - boxes, tensors[1] - scores

    Declaration
    Tensor IOps.NonMaxSuppression(Tensor[] tensors, int maxOutputBoxesPerClass, float iouThreshold, float scoreThreshold, int centerPointBox)
    Parameters
    Type Name Description
    Tensor[] tensors
    Int32 maxOutputBoxesPerClass

    max output boxes per class

    Single iouThreshold

    IOU (Intersection Over Union) threshold

    Single scoreThreshold

    score threshold

    Int32 centerPointBox

    center point box

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.NonMaxSuppression(Tensor[], Int32, Single, Single, Int32)

    IOps.Normalization(Tensor, Tensor, Tensor, Int32, Int32, Single, Layer.FusedActivation)

    Normalization

    Declaration
    Tensor IOps.Normalization(Tensor X, Tensor S, Tensor B, int pool, int axis, float epsilon, Layer.FusedActivation fusedActivation)
    Parameters
    Type Name Description
    Tensor X
    Tensor S
    Tensor B
    Int32 pool

    pooling

    Int32 axis

    axis

    Single epsilon

    threshold

    Layer.FusedActivation fusedActivation

    fused activation type

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Normalization(Tensor, Tensor, Tensor, Int32, Int32, Single, Layer.FusedActivation)

    IOps.OneHot(Tensor, Int32, Single, Single)

    One hot

    Declaration
    Tensor IOps.OneHot(Tensor X, int depth, float onValue, float offValue)
    Parameters
    Type Name Description
    Tensor X
    Int32 depth

    output depth

    Single onValue

    on value

    Single offValue

    off value

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.OneHot(Tensor, Int32, Single, Single)

    IOps.Pad2DEdge(Tensor, Int32[])

    Edge padding

    Declaration
    Tensor IOps.Pad2DEdge(Tensor X, int[] pad)
    Parameters
    Type Name Description
    Tensor X
    Int32[] pad

    padding

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Pad2DEdge(Tensor, Int32[])

    IOps.Pad2DReflect(Tensor, Int32[])

    Reflection padding

    Declaration
    Tensor IOps.Pad2DReflect(Tensor X, int[] pad)
    Parameters
    Type Name Description
    Tensor X
    Int32[] pad

    padding

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Pad2DReflect(Tensor, Int32[])

    IOps.Pad2DSymmetric(Tensor, Int32[])

    Symmetric padding

    Declaration
    Tensor IOps.Pad2DSymmetric(Tensor X, int[] pad)
    Parameters
    Type Name Description
    Tensor X
    Int32[] pad

    padding

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Pad2DSymmetric(Tensor, Int32[])

    IOps.Pow(Tensor, Single)

    Power

    Declaration
    Tensor IOps.Pow(Tensor X, float alpha)
    Parameters
    Type Name Description
    Tensor X
    Single alpha

    alpha

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Pow(Tensor, Single)

    IOps.Pow(Tensor[])

    Raise tensors to the power o =tensors[0] ^ tensors[1] ^ ... ^ tensors[N-1]

    Declaration
    Tensor IOps.Pow(Tensor[] tensors)
    Parameters
    Type Name Description
    Tensor[] tensors

    input tensors

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Pow(Tensor[])

    IOps.PRelu(Tensor, Tensor)

    PReLU

    Declaration
    Tensor IOps.PRelu(Tensor X, Tensor S)
    Parameters
    Type Name Description
    Tensor X
    Tensor S
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.PRelu(Tensor, Tensor)

    IOps.Prepare(Tensor)

    Prepares tensor for use

    Declaration
    Tensor IOps.Prepare(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    Tensor

    Implements
    IOps.Prepare(Tensor)

    IOps.PrepareNoAlloc(Tensor)

    Prepares tensor for use without uploading internal data to device

    Declaration
    Tensor IOps.PrepareNoAlloc(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    Tensor

    Implements
    IOps.PrepareNoAlloc(Tensor)

    IOps.RandomNormal(TensorShape, Single, Single, Int32)

    Normal random distribution

    Declaration
    Tensor IOps.RandomNormal(TensorShape s, float mean, float scale, int seed)
    Parameters
    Type Name Description
    TensorShape s

    shape

    Single mean

    mean

    Single scale

    scale

    Int32 seed

    seed

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.RandomNormal(TensorShape, Single, Single, Int32)

    IOps.RandomUniform(TensorShape, Single, Single, Int32)

    Uniform random distribution

    Declaration
    Tensor IOps.RandomUniform(TensorShape s, float mean, float scale, int seed)
    Parameters
    Type Name Description
    TensorShape s

    shape

    Single mean

    mean

    Single scale

    scale

    Int32 seed

    seed

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.RandomUniform(TensorShape, Single, Single, Int32)

    IOps.Reciprocal(Tensor)

    Reciprocal (1/x)

    Declaration
    Tensor IOps.Reciprocal(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Reciprocal(Tensor)

    IOps.ReduceMax(Tensor, Int32)

    Reduce with max

    Declaration
    Tensor IOps.ReduceMax(Tensor X, int axis)
    Parameters
    Type Name Description
    Tensor X
    Int32 axis

    axis

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.ReduceMax(Tensor, Int32)

    IOps.ReduceMean(Tensor, Int32)

    Reduce with mean

    Declaration
    Tensor IOps.ReduceMean(Tensor X, int axis)
    Parameters
    Type Name Description
    Tensor X
    Int32 axis

    axis

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.ReduceMean(Tensor, Int32)

    IOps.ReduceMin(Tensor, Int32)

    Reduce with min

    Declaration
    Tensor IOps.ReduceMin(Tensor X, int axis)
    Parameters
    Type Name Description
    Tensor X
    Int32 axis

    axis

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.ReduceMin(Tensor, Int32)

    IOps.ReduceProd(Tensor, Int32)

    Reduce with product

    Declaration
    Tensor IOps.ReduceProd(Tensor X, int axis)
    Parameters
    Type Name Description
    Tensor X
    Int32 axis

    axis

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.ReduceProd(Tensor, Int32)

    IOps.ReduceSum(Tensor, Int32)

    Reduce with sum

    Declaration
    Tensor IOps.ReduceSum(Tensor X, int axis)
    Parameters
    Type Name Description
    Tensor X
    Int32 axis

    axis

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.ReduceSum(Tensor, Int32)

    IOps.Relu(Tensor)

    ReLU

    Declaration
    Tensor IOps.Relu(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Relu(Tensor)

    IOps.Relu6(Tensor)

    ReLU capped to 6

    Declaration
    Tensor IOps.Relu6(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Relu6(Tensor)

    IOps.Resample2D(Tensor, Int32[], Boolean)

    Resample 2D

    Declaration
    Tensor IOps.Resample2D(Tensor X, int[] size, bool bilinear)
    Parameters
    Type Name Description
    Tensor X
    Int32[] size

    size

    Boolean bilinear

    bilinear flag

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Resample2D(Tensor, Int32[], Boolean)

    IOps.ResetAllocator(Boolean)

    Reset internal allocator

    Declaration
    void IOps.ResetAllocator(bool keepCachedMemory)
    Parameters
    Type Name Description
    Boolean keepCachedMemory

    keep cached memory flag

    Implements
    IOps.ResetAllocator(Boolean)

    IOps.Reshape(Tensor, TensorShape)

    Reshape

    Declaration
    Tensor IOps.Reshape(Tensor X, TensorShape shape)
    Parameters
    Type Name Description
    Tensor X
    TensorShape shape

    new shape

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Reshape(Tensor, TensorShape)

    IOps.Round(Tensor)

    Round to nearest integer. In case of halfs, round to nearest even integer

    Declaration
    Tensor IOps.Round(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Round(Tensor)

    IOps.ScaleBias(Tensor, Tensor, Tensor)

    Scale bias o = s * x + b, element wise

    Declaration
    Tensor IOps.ScaleBias(Tensor X, Tensor S, Tensor B)
    Parameters
    Type Name Description
    Tensor X
    Tensor S
    Tensor B
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.ScaleBias(Tensor, Tensor, Tensor)

    IOps.Selu(Tensor, Single, Single)

    SELU

    Declaration
    Tensor IOps.Selu(Tensor X, float alpha, float gamma)
    Parameters
    Type Name Description
    Tensor X
    Single alpha

    alpha

    Single gamma

    gamma

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Selu(Tensor, Single, Single)

    IOps.SetModelExecutionsReporter(IModelExecutionsReporter)

    Set model executions reporter model executions reporter

    Declaration
    void IOps.SetModelExecutionsReporter(IModelExecutionsReporter executionsReporter)
    Parameters
    Type Name Description
    IModelExecutionsReporter executionsReporter
    Implements
    IOps.SetModelExecutionsReporter(IModelExecutionsReporter)

    IOps.Shape(Tensor, Int32)

    Shape of the input

    Declaration
    Tensor IOps.Shape(Tensor X, int axis)
    Parameters
    Type Name Description
    Tensor X

    input

    Int32 axis

    axis

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Shape(Tensor, Int32)

    IOps.Sigmoid(Tensor)

    Sigmoid

    Declaration
    Tensor IOps.Sigmoid(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Sigmoid(Tensor)

    IOps.Sign(Tensor)

    Sign

    Declaration
    Tensor IOps.Sign(Tensor x)
    Parameters
    Type Name Description
    Tensor x

    input

    Returns
    Type Description
    Tensor

    Tensor with 1 if x > 0 -1 if < 0 and 0 if == 0 values

    Implements
    IOps.Sign(Tensor)

    IOps.Sin(Tensor)

    Sin

    Declaration
    Tensor IOps.Sin(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Sin(Tensor)

    IOps.Sinh(Tensor)

    Sinh

    Declaration
    Tensor IOps.Sinh(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Sinh(Tensor)

    IOps.Softmax(Tensor, Int32)

    Softmax

    Declaration
    Tensor IOps.Softmax(Tensor X, int axis)
    Parameters
    Type Name Description
    Tensor X
    Int32 axis

    axis

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Softmax(Tensor, Int32)

    IOps.Softplus(Tensor)

    Softplus

    Declaration
    Tensor IOps.Softplus(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Softplus(Tensor)

    IOps.SpaceToDepth(Tensor, Int32[])

    Space to depth

    Declaration
    Tensor IOps.SpaceToDepth(Tensor X, int[] scale)
    Parameters
    Type Name Description
    Tensor X
    Int32[] scale

    scale

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.SpaceToDepth(Tensor, Int32[])

    IOps.Sqrt(Tensor)

    Sqrt

    Declaration
    Tensor IOps.Sqrt(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Sqrt(Tensor)

    IOps.StridedSlice(Tensor, Int32[], Int32[], Int32[])

    Strided slice

    Declaration
    Tensor IOps.StridedSlice(Tensor X, int[] starts, int[] ends, int[] strides)
    Parameters
    Type Name Description
    Tensor X
    Int32[] starts
    Int32[] ends
    Int32[] strides
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.StridedSlice(Tensor, Int32[], Int32[], Int32[])

    IOps.Sub(Tensor[])

    Subtract tensors o = tensors[0] - tensors[1] - ... - tensors[N-1]

    Declaration
    Tensor IOps.Sub(Tensor[] tensors)
    Parameters
    Type Name Description
    Tensor[] tensors

    input tensors

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Sub(Tensor[])

    IOps.Swish(Tensor)

    Swish

    Declaration
    Tensor IOps.Swish(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Swish(Tensor)

    IOps.Tan(Tensor)

    Tan

    Declaration
    Tensor IOps.Tan(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Tan(Tensor)

    IOps.Tanh(Tensor)

    Tanh

    Declaration
    Tensor IOps.Tanh(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Tanh(Tensor)

    IOps.Tile(Tensor, Int32[])

    Tile

    Declaration
    Tensor IOps.Tile(Tensor X, int[] repeats)
    Parameters
    Type Name Description
    Tensor X
    Int32[] repeats

    repetition counts

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Tile(Tensor, Int32[])

    IOps.TopKIndices(Tensor, Int32, Int32, Boolean, Boolean)

    Top K indices

    Declaration
    Tensor IOps.TopKIndices(Tensor X, int k, int axis, bool largest, bool sorted)
    Parameters
    Type Name Description
    Tensor X
    Int32 k

    k

    Int32 axis

    axis

    Boolean largest

    largest flag

    Boolean sorted

    sorted flag

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.TopKIndices(Tensor, Int32, Int32, Boolean, Boolean)

    IOps.Transpose(Tensor)

    Transpose matrix

    Declaration
    Tensor IOps.Transpose(Tensor X)
    Parameters
    Type Name Description
    Tensor X
    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Transpose(Tensor)

    IOps.Transpose(Tensor, Int32[])

    Transpose according to permutations

    Declaration
    Tensor IOps.Transpose(Tensor X, int[] permutations)
    Parameters
    Type Name Description
    Tensor X
    Int32[] permutations

    new axis order

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Transpose(Tensor, Int32[])

    IOps.Upsample2D(Tensor, Int32[], Boolean)

    Upsample 2D

    Declaration
    Tensor IOps.Upsample2D(Tensor X, int[] scale, bool bilinear)
    Parameters
    Type Name Description
    Tensor X
    Int32[] scale

    scale

    Boolean bilinear

    bilinear flag

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Upsample2D(Tensor, Int32[], Boolean)

    IOps.Upsample3D(Tensor, Int32[], Boolean)

    Upsample 3D

    Declaration
    Tensor IOps.Upsample3D(Tensor X, int[] scale, bool trilinear)
    Parameters
    Type Name Description
    Tensor X
    Int32[] scale

    scale

    Boolean trilinear

    trilinear flag

    Returns
    Type Description
    Tensor

    output Tensor

    Implements
    IOps.Upsample3D(Tensor, Int32[], Boolean)

    IOps.Where(Tensor, Tensor, Tensor)

    Where

    Declaration
    Tensor IOps.Where(Tensor c, Tensor a, Tensor b)
    Parameters
    Type Name Description
    Tensor c

    Tensor c

    Tensor a

    Tensor a

    Tensor b

    Tensor b

    Returns
    Type Description
    Tensor

    Tensor with values c ? a : b

    Implements
    IOps.Where(Tensor, Tensor, Tensor)
    Back to top
    Copyright © 2023 Unity Technologies — Terms of use
    • Legal
    • Privacy Policy
    • Cookies
    • Do Not Sell or Share My Personal Information
    • Your Privacy Choices (Cookie Settings)
    "Unity", Unity logos, and other Unity trademarks are trademarks or registered trademarks of Unity Technologies or its affiliates in the U.S. and elsewhere (more info here). Other names or brands are trademarks of their respective owners.
    Generated by DocFX on 18 October 2023