Exporting your model to ONNX format
To use your trained neural network in Unity, you need to export it to the ONNX format.
ONNX (Open Neural Network Exchange) is an open format for ML models. It allows you to easily interchange models between various ML frameworks and tools.
You can export a neural network from the following Deep Learning APIs:
- Pytorch
- Tensorflow
- Keras
For a list of the ONNX operators that Barracuda supports, see Supported operators.
Pytorch
It is easy to export a Pytorch
model to ONNX because it is built into the API. The Pytorch documentation provides a good example on how to perform this conversion.
This is a simplified example:
# network
net = ...
# Input to the model
x = torch.randn(1, 3, 256, 256)
# Export the model
torch.onnx.export(net, # model being run
x, # model input (or a tuple for multiple inputs)
"example.onnx", # where to save the model (can be a file or file-like object)
export_params=True, # store the trained parameter weights inside the model file
opset_version=9, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names = ['X'], # the model's input names
output_names = ['Y'] # the model's output names
)
TensorFlow
Exporting a TensorFlow neural network to ONNX takes a bit longer than with Pytorch, but it is still straightforward.
Install tf2onnx.
These tutorials provide end-to-end examples:
This is a simplified example:
- First save your TensorFlow to
.pd
format.
# network
net = ...
# Export the model
tf.saved_model.save(net, "saved_model")
# or
tf.train.write_graph(self.sess.graph_def, directory,
'saved_model.pb', as_text=False)
- Second, convert the
.pb
file to.onnx
withtf2onnx
.
# load saved network
graph_def = tf.compat.v1.GraphDef()
with open(modelPathIn, 'rb') as f:
graph_def.ParseFromString(f.read())
with tf.Graph().as_default() as graph:
tf.import_graph_def(graph_def, name='')
# optimize and save to ONNX
# Note: tf appends :0 to layer names
inputs[:] = [i+":0" for i in inputs]
outputs[:] = [o+":0" for o in outputs]
# optional step, but helpful to facilitate readability and import to Barracuda
newGraphModel_Optimized = tf2onnx.tfonnx.tf_optimize(inputs, outputs, graph_def)
# saving the model
tf.compat.v1.reset_default_graph()
tf.import_graph_def(newGraphModel_Optimized, name='')
with tf.compat.v1.Session() as sess:
# inputs_as_nchw are optional, but with ONNX in NCHW and Tensorflow in NHWC format, it is best to add this option
g = tf2onnx.tfonnx.process_tf_graph(sess.graph,input_names=inputs, output_names=outputs, inputs_as_nchw=inputs)
model_proto = g.make_model(modelPathOut)
checker = onnx.checker.check_model(model_proto)
tf2onnx.utils.save_onnx_model("./", "saved_model", feed_dict={}, model_proto=model_proto)
# validate onnxruntime
if(args.validate_onnx_runtime):
print("validating onnx runtime")
import onnxruntime as rt
sess = rt.InferenceSession("saved_model.onnx")
Alternatively, you can use the command line as follows:
python -m tf2onnx.convert --graphdef model.pb --inputs=input:0 --outputs=output:0 --output model.onnx
Keras
To export a Keras neural network to ONNX you need keras2onnx.
These two tutorials provide end-to-end examples:
Keras provides a Keras to ONNX format converter as a Python API. You must write a script to perform the conversion itself. See the Keras tutorials above for this API conversion script. The following code is an extract from that script:
# network
net = ...
# convert model to ONNX
onnx_model = keras2onnx.convert_keras(net, # keras model
name="example", # the converted ONNX model internal name
target_opset=9, # the ONNX version to export the model to
channel_first_inputs=None # which inputs to transpose from NHWC to NCHW
)
onnx.save_model(onnx_model, "example.onnx")
Notes
- In most cases, use ONNX
opset=9
, because it has wider coverage in Barracuda. - When exporting from TensorFlow or Keras, use TF-1 instead of TF-2.